| name | langconfig-builder |
| description | Complete guide for building agents and workflows in LangConfig. Use when users need help configuring nodes, connecting agents, setting up tools, or designing multi-agent systems within the LangConfig platform. |
| version | 1.0.0 |
| author | LangConfig |
| tags | langconfig, builder, configuration, deep-agents, workflows, tools |
| triggers | when user mentions LangConfig, when user wants to build a workflow, when user needs help with configuration, when user mentions deep agent, when designing agent system |
| allowed_tools | filesystem, shell, python |
Instructions
You are an expert LangConfig architect helping users build sophisticated AI agent systems. LangConfig is a visual platform for building LangChain agents and LangGraph workflows with full control over configurations.
LangConfig Platform Overview
LangConfig provides:
- Visual Workflow Builder - Drag-and-drop LangGraph canvas
- Agent Configuration - Full control over models, prompts, tools
- Deep Agents - Nested agent hierarchies with subagents
- Native Tools - Built-in filesystem, web, code execution tools
- RAG Integration - pgvector-powered knowledge base
- Real-Time Monitoring - Live execution tracking and debugging
Building Agents
Agent Configuration Fields
| Field | Type | Description |
|---|---|---|
name |
string | Display name for the agent |
model |
string | LLM model ID (see supported models) |
temperature |
float | 0.0-2.0, controls randomness |
max_tokens |
int | Maximum response length |
system_prompt |
string | Agent instructions and persona |
native_tools |
string[] | List of tool names to enable |
enable_memory |
bool | Enable cross-session memory |
enable_rag |
bool | Enable document retrieval |
timeout_seconds |
int | Maximum execution time |
max_retries |
int | Retry count on failures |
Complete Agent Configuration Example
{
"name": "Research Assistant",
"model": "claude-sonnet-4-5-20250929",
"temperature": 0.5,
"max_tokens": 8192,
"system_prompt": "You are a thorough research assistant. When given a topic:\n1. Search for relevant information\n2. Verify facts from multiple sources\n3. Synthesize findings into clear summaries\n\nAlways cite your sources.",
"native_tools": ["web_search", "web_fetch", "filesystem"],
"enable_memory": true,
"enable_rag": false,
"timeout_seconds": 300,
"max_retries": 3,
"recursion_limit": 50
}
Deep Agents (Advanced)
Deep Agents support hierarchical agent structures with specialized subagents:
Deep Agent Configuration
{
"name": "Project Manager",
"model": "claude-opus-4-5-20250514",
"use_deepagents": true,
"subagents": [
{
"name": "researcher",
"type": "dictionary",
"description": "Handles research tasks",
"model": "claude-sonnet-4-5-20250929",
"system_prompt": "You are a research specialist.",
"tools": ["web_search", "web_fetch"]
},
{
"name": "coder",
"type": "dictionary",
"description": "Handles coding tasks",
"model": "claude-sonnet-4-5-20250929",
"system_prompt": "You are a coding specialist.",
"tools": ["filesystem", "python", "shell"]
},
{
"name": "writer",
"type": "dictionary",
"description": "Handles writing tasks",
"model": "claude-haiku-4-5-20251015",
"system_prompt": "You are a writing specialist.",
"tools": ["filesystem"]
}
]
}
Subagent Types
Dictionary Subagent - Simple agent with tools
{ "type": "dictionary", "name": "specialist", "tools": ["tool1", "tool2"] }Compiled Subagent - References existing workflow
{ "type": "compiled", "name": "complex_task", "workflow_id": 42 }
Building Workflows
Node Types Reference
AGENT_NODE
Standard processing node with an LLM agent:
- Has full agent configuration
- Can use tools
- Outputs to message history
CONDITIONAL_NODE
Routes based on conditions:
Condition syntax:
- "'keyword' in messages[-1].content"
- "state.get('score', 0) > 0.8"
- "'ERROR' not in result"
LOOP_NODE
Iterates until condition met:
max_iterations: Safety limitexit_condition: When to stop- Tracks iteration count
OUTPUT_NODE
Terminates workflow:
- Formats final output
- Can transform result
CHECKPOINT_NODE
Saves state for resumption:
- Named checkpoints
- Enables pause/resume
APPROVAL_NODE
Human-in-the-loop:
- Pauses for user input
- Approval/rejection routing
Edge Types
- Default Edge - Always follows path
- Conditional Edge - Routes based on state
- Loop Edge - Returns to previous node
Workflow Templates
1. Simple Q&A Pipeline
[START] → [Researcher] → [Output]
Nodes:
- Researcher: web_search, web_fetch tools
- Output: Format markdown response
2. Content Generation with Review
[START] → [Writer] → [Reviewer] → [Conditional]
├── PASS → [Output]
└── REVISE → [Writer]
Nodes:
- Writer: Generate content
- Reviewer: Critique and score
- Conditional: Check if score > 0.8
3. Multi-Specialist Research
[START] → [Supervisor] → [Conditional]
├── research → [Researcher] → [Supervisor]
├── code → [Coder] → [Supervisor]
└── done → [Output]
Nodes:
- Supervisor: Delegate and coordinate
- Researcher: Web research specialist
- Coder: Code analysis specialist
4. Document Processing Pipeline
[START] → [Loader] → [Analyzer] → [Loop]
├── continue → [Processor] → [Loop]
└── done → [Aggregator] → [Output]
Nodes:
- Loader: Load documents into context
- Analyzer: Identify sections to process
- Processor: Process each section
- Aggregator: Combine results
Tool Configuration
Available Native Tools
| Tool | Purpose | Example Use |
|---|---|---|
web_search |
Search internet | Research topics |
web_fetch |
Fetch web pages | Read documentation |
filesystem |
Read/write files | Code editing |
python |
Execute Python | Data analysis |
shell |
Run commands | DevOps tasks |
grep |
Search files | Find code patterns |
calculator |
Math operations | Calculations |
Tool Selection Guidelines
Research Agent:
→ web_search, web_fetch
Code Assistant:
→ filesystem, python, shell, grep
Data Analyst:
→ python, filesystem, calculator
Content Writer:
→ web_search, filesystem
DevOps Agent:
→ shell, filesystem, web_fetch
RAG (Knowledge Base) Integration
Enabling RAG for an Agent
{
"enable_rag": true,
"rag_config": {
"similarity_threshold": 0.7,
"max_documents": 5,
"rerank_results": true
}
}
Document Types Supported
- PDF files
- Word documents (.docx)
- Text files (.txt, .md)
- Code files (various extensions)
- Web pages (via URL)
Best Practices
1. Start Simple
- Begin with single agent
- Add complexity incrementally
- Test each node before connecting
2. Use Appropriate Models
- Opus: Complex reasoning, expensive
- Sonnet: Balanced, recommended default
- Haiku: Fast, cheap, simple tasks
3. Write Clear System Prompts
- Define role explicitly
- List specific responsibilities
- Include output format requirements
- Add constraints and guardrails
4. Handle Failures
- Set reasonable timeouts
- Configure retry logic
- Add error handling nodes
- Use checkpoints before risky operations
5. Optimize Token Usage
- Use smaller models for simple tasks
- Limit context window
- Checkpoint and clear history
- Be concise in prompts
Debugging Tips
Workflow Issues
- Check browser console for errors
- Review execution events in Results tab
- Verify all edges are connected
- Check conditional expressions
Agent Issues
- Test agent in isolation first
- Verify tools are enabled
- Check system prompt clarity
- Review token/timeout limits
Performance Issues
- Use faster models (haiku)
- Reduce tool count
- Simplify prompts
- Add caching via checkpoints
Examples
User asks: "Help me build a code review workflow"
Response approach:
- Design nodes: Analyzer → Reviewer → Summarizer
- Configure Analyzer with filesystem, grep tools
- Set Reviewer to evaluate code quality
- Add CONDITIONAL_NODE for pass/fail routing
- Create Summarizer for final report
- Connect with appropriate edges
- Set loop for revision if needed
- Add OUTPUT_NODE for formatted results