Claude Code Plugins

Community-maintained marketplace

Feedback

deep-analysis

@Lobbi-Docs/claude
0
0

Analytical thinking patterns for comprehensive evaluation, code audits, security analysis, and performance reviews. Provides structured templates for thorough investigation with extended thinking support.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name deep-analysis
description Analytical thinking patterns for comprehensive evaluation, code audits, security analysis, and performance reviews. Provides structured templates for thorough investigation with extended thinking support.
allowed-tools Bash, Read, Write, Edit, Glob, Grep, Task, WebFetch, WebSearch
dependencies extended-thinking, complex-reasoning
triggers analyze, audit, review, assess, evaluate, investigate, deep dive, comprehensive review, security analysis, performance analysis, code audit

Deep Analysis Skill

Comprehensive analytical templates for thorough investigation, audits, and evaluations leveraging extended thinking capabilities.

When to Use

  • Code audits requiring systematic review
  • Security assessments and threat modeling
  • Performance analysis and optimization planning
  • Architecture reviews and technical debt assessment
  • Incident post-mortems and root cause analysis
  • Compliance audits and risk assessments

Analysis Templates

Code Audit Template

## Code Audit Report

**Repository**: [repo-name]
**Scope**: [files/modules audited]
**Date**: [YYYY-MM-DD]
**Auditor**: Claude + [Human reviewer]

### Executive Summary
[2-3 sentence overview of findings]

### Audit Criteria
- [ ] Code quality and maintainability
- [ ] Security vulnerabilities
- [ ] Performance concerns
- [ ] Test coverage
- [ ] Documentation completeness
- [ ] Dependency health

### Critical Findings
| ID | Severity | Location | Issue | Recommendation |
|----|----------|----------|-------|----------------|
| C1 | Critical | file:line | [Issue] | [Fix] |
| C2 | Critical | file:line | [Issue] | [Fix] |

### High Priority Findings
| ID | Severity | Location | Issue | Recommendation |
|----|----------|----------|-------|----------------|
| H1 | High | file:line | [Issue] | [Fix] |

### Medium Priority Findings
[...]

### Low Priority / Suggestions
[...]

### Metrics
| Metric | Value | Target | Status |
|--------|-------|--------|--------|
| Test Coverage | 75% | 80% | ⚠️ |
| Cyclomatic Complexity | 12 | <10 | ⚠️ |
| Technical Debt | 4.2d | <3d | ❌ |
| Security Score | 8/10 | 9/10 | ⚠️ |

### Recommendations
1. **Immediate**: [Critical fixes]
2. **Short-term**: [Within sprint]
3. **Long-term**: [Tech debt reduction]

### Sign-off
- [ ] All critical issues addressed
- [ ] High priority issues have timeline
- [ ] Audit findings documented in backlog

Security Threat Model Template

## Threat Model: [System/Component Name]

**Version**: [1.0]
**Last Updated**: [YYYY-MM-DD]
**Classification**: [Internal/Confidential]

### System Overview
[Brief description of the system being modeled]

### Assets
| Asset | Description | Sensitivity | Owner |
|-------|-------------|-------------|-------|
| User Data | PII, credentials | Critical | Auth Team |
| API Keys | Service credentials | High | DevOps |
| Business Data | Transactions | High | Product |

### Trust Boundaries

┌─────────────────────────────────────────┐ │ External (Untrusted) │ │ [Internet Users] [Third-party APIs] │ └──────────────────┬──────────────────────┘ │ WAF/Load Balancer ┌──────────────────┴──────────────────────┐ │ DMZ (Semi-trusted) │ │ [API Gateway] [CDN] [Public Services] │ └──────────────────┬──────────────────────┘ │ Internal Firewall ┌──────────────────┴──────────────────────┐ │ Internal (Trusted) │ │ [App Servers] [Databases] [Queues] │ └─────────────────────────────────────────┘


### Threat Categories (STRIDE)

#### Spoofing
| Threat | Likelihood | Impact | Mitigation |
|--------|------------|--------|------------|
| Credential theft | Medium | High | MFA, rate limiting |
| Session hijacking | Low | High | Secure cookies, HTTPS |

#### Tampering
| Threat | Likelihood | Impact | Mitigation |
|--------|------------|--------|------------|
| SQL injection | Medium | Critical | Parameterized queries |
| Data modification | Low | High | Integrity checks |

#### Repudiation
[...]

#### Information Disclosure
[...]

#### Denial of Service
[...]

#### Elevation of Privilege
[...]

### Attack Vectors
1. **Vector 1**: [Description]
   - Entry point: [Where]
   - Technique: [How]
   - Mitigation: [Defense]

### Risk Matrix
| Threat | Likelihood | Impact | Risk Score | Priority |
|--------|------------|--------|------------|----------|
| T1     | High       | Critical | 9 | P1 |
| T2     | Medium     | High | 6 | P2 |
| T3     | Low        | Medium | 3 | P3 |

### Security Controls
| Control | Type | Status | Coverage |
|---------|------|--------|----------|
| WAF | Preventive | ✅ Active | External |
| SAST | Detective | ✅ CI/CD | Code |
| DAST | Detective | ⚠️ Partial | Runtime |
| Encryption | Preventive | ✅ Active | Data |

### Recommendations
1. [Priority 1 recommendations]
2. [Priority 2 recommendations]
3. [Priority 3 recommendations]

Performance Analysis Template

## Performance Analysis Report

**System**: [System name]
**Period**: [Date range]
**Environment**: [Production/Staging]

### Executive Summary
[Key findings and recommendations]

### Performance Metrics

#### Response Times
| Endpoint | P50 | P95 | P99 | Target | Status |
|----------|-----|-----|-----|--------|--------|
| /api/users | 45ms | 120ms | 350ms | <200ms | ✅ |
| /api/search | 230ms | 890ms | 2.1s | <500ms | ❌ |
| /api/reports | 1.2s | 3.4s | 8.2s | <2s | ❌ |

#### Throughput
| Service | Current RPS | Peak RPS | Capacity | Utilization |
|---------|-------------|----------|----------|-------------|
| API | 1,200 | 2,400 | 5,000 | 48% |
| Worker | 500 | 800 | 1,000 | 80% |

#### Resource Utilization
| Resource | Average | Peak | Threshold | Status |
|----------|---------|------|-----------|--------|
| CPU | 45% | 78% | 80% | ⚠️ |
| Memory | 62% | 85% | 85% | ⚠️ |
| Disk I/O | 30% | 55% | 70% | ✅ |
| Network | 25% | 40% | 60% | ✅ |

### Bottleneck Analysis

#### Identified Bottlenecks
1. **Database Queries** (High Impact)
   - Location: `/api/search` endpoint
   - Cause: Missing index on `created_at` column
   - Impact: 890ms P95 latency
   - Fix: Add composite index

2. **Memory Pressure** (Medium Impact)
   - Location: Report generation service
   - Cause: Large dataset loading into memory
   - Impact: GC pauses, OOM risks
   - Fix: Implement streaming/pagination

### Load Test Results
| Scenario | Users | Duration | Errors | Avg Response |
|----------|-------|----------|--------|--------------|
| Baseline | 100 | 10min | 0% | 120ms |
| Normal | 500 | 30min | 0.1% | 180ms |
| Peak | 1000 | 15min | 2.3% | 450ms |
| Stress | 2000 | 5min | 15% | 2.1s |

### Optimization Recommendations

#### Quick Wins (This Sprint)
1. Add database indexes - Expected: 40% improvement
2. Enable query caching - Expected: 25% improvement
3. Optimize N+1 queries - Expected: 30% improvement

#### Medium Term (Next Quarter)
1. Implement read replicas
2. Add CDN for static assets
3. Optimize serialization

#### Long Term (6+ Months)
1. Service decomposition
2. Event-driven architecture
3. Edge computing deployment

### Capacity Planning
| Timeframe | Expected Load | Current Capacity | Gap | Action |
|-----------|---------------|------------------|-----|--------|
| 3 months | +25% | 5,000 RPS | ✅ | Monitor |
| 6 months | +50% | 5,000 RPS | ⚠️ | Scale |
| 12 months | +100% | 5,000 RPS | ❌ | Redesign |

Architecture Review Template

## Architecture Review

**System**: [System name]
**Version**: [Current architecture version]
**Review Date**: [YYYY-MM-DD]
**Participants**: [Team members]

### Current Architecture

#### System Diagram

[Include architecture diagram or ASCII representation]


#### Components
| Component | Purpose | Technology | Owner |
|-----------|---------|------------|-------|
| API Gateway | Request routing | Kong | Platform |
| Auth Service | Authentication | Keycloak | Security |
| Core API | Business logic | Python/FastAPI | Backend |
| Database | Data persistence | PostgreSQL | Data |

#### Data Flow
1. User request → API Gateway
2. API Gateway → Auth validation
3. Auth → Core API
4. Core API → Database
5. Response → User

### Evaluation Criteria

#### Scalability
| Aspect | Current | Target | Gap | Score |
|--------|---------|--------|-----|-------|
| Horizontal scaling | Manual | Auto | Yes | 6/10 |
| Database scaling | Single | Sharded | Yes | 5/10 |
| Caching | Redis | Distributed | No | 8/10 |

#### Reliability
| Aspect | Current | Target | Gap | Score |
|--------|---------|--------|-----|-------|
| Availability | 99.5% | 99.9% | Yes | 7/10 |
| Disaster recovery | Manual | Auto | Yes | 5/10 |
| Data backup | Daily | Real-time | Yes | 6/10 |

#### Maintainability
| Aspect | Current | Target | Gap | Score |
|--------|---------|--------|-----|-------|
| Code modularity | Medium | High | Yes | 6/10 |
| Documentation | Partial | Complete | Yes | 5/10 |
| Test coverage | 70% | 85% | Yes | 7/10 |

### Technical Debt Assessment
| Item | Impact | Effort | Priority | Age |
|------|--------|--------|----------|-----|
| Legacy auth system | High | High | P1 | 2y |
| Monolithic API | Medium | High | P2 | 1.5y |
| Missing monitoring | Medium | Low | P1 | 1y |

### Recommendations

#### Immediate (0-3 months)
1. [Recommendation 1]
2. [Recommendation 2]

#### Short-term (3-6 months)
1. [Recommendation 1]
2. [Recommendation 2]

#### Long-term (6-12 months)
1. [Recommendation 1]
2. [Recommendation 2]

### Decision Log
| Decision | Rationale | Alternatives Considered | Date |
|----------|-----------|------------------------|------|
| [Decision 1] | [Why] | [Options] | [Date] |

Integration with Extended Thinking

For deep analysis tasks, use maximum thinking budget:

response = client.messages.create(
    model="claude-opus-4-5-20250514",
    max_tokens=32000,
    thinking={
        "type": "enabled",
        "budget_tokens": 25000  # Maximum budget for deep analysis
    },
    system="""You are a senior technical analyst performing a
    comprehensive review. Use structured analysis templates and
    document all findings systematically.""",
    messages=[{
        "role": "user",
        "content": "Perform a security threat model for..."
    }]
)

Best Practices

  1. Use appropriate templates: Match template to analysis type
  2. Be systematic: Follow the template structure completely
  3. Quantify findings: Use metrics and severity ratings
  4. Prioritize actionable: Focus on findings that can be fixed
  5. Document evidence: Link to specific code/logs/data
  6. Track progress: Update findings as they're addressed

See Also

  • [[extended-thinking]] - Enable deep reasoning capabilities
  • [[complex-reasoning]] - Reasoning frameworks
  • [[testing]] - Validation strategies
  • [[debugging]] - Issue investigation