| name | vectordb |
| description | Vector database operations for embeddings and semantic search. Activate for Pinecone, Weaviate, Chroma, pgvector, RAG, and similarity search. |
| allowed-tools | Bash, Read, Write, Edit, Glob, Grep |
Vector Database Skill
Provides comprehensive vector database capabilities for the Golden Armada AI Agent Fleet Platform.
When to Use This Skill
Activate this skill when working with:
- Semantic search implementation
- RAG (Retrieval Augmented Generation)
- Embedding storage and retrieval
- Similarity search
- Vector index management
Embedding Generation
```python import openai from anthropic import Anthropic
OpenAI embeddings
def get_openai_embedding(text: str) -> list[float]: response = openai.embeddings.create( model="text-embedding-3-small", input=text ) return response.data[0].embedding
Batch embeddings
def get_batch_embeddings(texts: list[str]) -> list[list[float]]: response = openai.embeddings.create( model="text-embedding-3-small", input=texts ) return [item.embedding for item in response.data] ```
Pinecone
```python from pinecone import Pinecone, ServerlessSpec
Initialize
pc = Pinecone(api_key=os.environ["PINECONE_API_KEY"])
Create index
pc.create_index( name="agents", dimension=1536, metric="cosine", spec=ServerlessSpec( cloud="aws", region="us-west-2" ) )
Get index
index = pc.Index("agents")
Upsert vectors
index.upsert( vectors=[ { "id": "agent-1", "values": embedding, "metadata": { "name": "Claude Agent", "type": "claude", "description": "General assistant" } } ], namespace="production" )
Query
results = index.query( vector=query_embedding, top_k=10, include_metadata=True, namespace="production", filter={"type": {"$eq": "claude"}} )
for match in results.matches: print(f"{match.id}: {match.score} - {match.metadata}")
Delete
index.delete(ids=["agent-1"], namespace="production") ```
Chroma
```python import chromadb from chromadb.config import Settings
Initialize
client = chromadb.PersistentClient(path="./chroma_db")
Create collection
collection = client.get_or_create_collection( name="agents", metadata={"hnsw:space": "cosine"} )
Add documents
collection.add( ids=["agent-1", "agent-2"], embeddings=[embedding1, embedding2], documents=["Document 1 text", "Document 2 text"], metadatas=[ {"type": "claude", "version": "3"}, {"type": "gpt", "version": "4"} ] )
Query
results = collection.query( query_embeddings=[query_embedding], n_results=10, where={"type": "claude"}, include=["documents", "metadatas", "distances"] )
Update
collection.update( ids=["agent-1"], metadatas=[{"type": "claude", "version": "3.5"}] )
Delete
collection.delete(ids=["agent-1"]) ```
pgvector (PostgreSQL)
```sql -- Enable extension CREATE EXTENSION vector;
-- Create table CREATE TABLE documents ( id UUID PRIMARY KEY DEFAULT gen_random_uuid(), content TEXT NOT NULL, embedding vector(1536), metadata JSONB DEFAULT '{}' );
-- Create index (IVFFlat for larger datasets) CREATE INDEX ON documents USING ivfflat (embedding vector_cosine_ops) WITH (lists = 100);
-- Or HNSW for better recall CREATE INDEX ON documents USING hnsw (embedding vector_cosine_ops);
-- Insert INSERT INTO documents (content, embedding, metadata) VALUES ('Document content', '[0.1, 0.2, ...]', '{"type": "manual"}');
-- Similarity search SELECT id, content, 1 - (embedding <=> $1) AS similarity FROM documents ORDER BY embedding <=> $1 LIMIT 10;
-- With filter SELECT id, content, 1 - (embedding <=> $1) AS similarity FROM documents WHERE metadata->>'type' = 'manual' ORDER BY embedding <=> $1 LIMIT 10; ```
Python with pgvector
```python from pgvector.sqlalchemy import Vector from sqlalchemy import Column, String, JSON from sqlalchemy.dialects.postgresql import UUID
class Document(Base): tablename = 'documents'
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
content = Column(String, nullable=False)
embedding = Column(Vector(1536))
metadata = Column(JSON, default={})
Insert
doc = Document( content="Document content", embedding=embedding, metadata={"type": "manual"} ) session.add(doc) session.commit()
Query
from sqlalchemy import select from pgvector.sqlalchemy import cosine_distance
results = session.execute( select(Document) .order_by(cosine_distance(Document.embedding, query_embedding)) .limit(10) ).scalars().all() ```
RAG Implementation
```python class RAGService: def init(self, vector_store, llm_client): self.vector_store = vector_store self.llm = llm_client
async def query(self, question: str, top_k: int = 5) -> str:
# 1. Generate query embedding
query_embedding = await self.get_embedding(question)
# 2. Retrieve relevant documents
docs = await self.vector_store.search(
embedding=query_embedding,
top_k=top_k
)
# 3. Build context
context = "\n\n".join([
f"Document {i+1}:\n{doc.content}"
for i, doc in enumerate(docs)
])
# 4. Generate response
prompt = f"""Answer the question based on the following context.
Context: {context}
Question: {question}
Answer:"""
response = await self.llm.generate(prompt)
return response
async def add_document(self, content: str, metadata: dict = None):
# Chunk document
chunks = self.chunk_text(content)
# Generate embeddings
embeddings = await self.get_batch_embeddings(chunks)
# Store
for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)):
await self.vector_store.upsert(
id=f"{metadata.get('doc_id', 'doc')}-{i}",
embedding=embedding,
content=chunk,
metadata=metadata
)
def chunk_text(self, text: str, chunk_size: int = 1000, overlap: int = 200) -> list[str]:
chunks = []
start = 0
while start < len(text):
end = start + chunk_size
chunk = text[start:end]
chunks.append(chunk)
start += chunk_size - overlap
return chunks
```
Best Practices
- Choose appropriate index type (HNSW for recall, IVFFlat for scale)
- Chunk documents appropriately (typically 500-1000 tokens)
- Include overlap between chunks (10-20%)
- Store metadata for filtering
- Use namespaces/collections to organize data
- Monitor query latency and index performance
- Batch operations for bulk inserts