| name | performance-budget-checker |
| description | Detects performance anti-patterns like N+1 queries, nested loops, large file operations, and inefficient algorithms. Suggests fast fixes before issues reach production. |
Performance Budget Checker Skill
Purpose: Catch performance killers before they slow production.
Trigger Words: query, database, loop, for, map, filter, file, read, load, fetch, API, cache
Quick Decision: Check Performance?
def needs_perf_check(code_context: dict) -> bool:
"""Fast performance risk evaluation."""
# Performance-critical patterns
patterns = [
"for ", "while ", "map(", "filter(", # Loops
"db.", "query", "select", "fetch", # Database
".all()", ".filter(", ".find(", # ORM queries
"open(", "read", "readlines", # File I/O
"json.loads", "pickle.load", # Deserialization
"sorted(", "sort(", # Sorting
"in list", "in array", # Linear search
]
code = code_context.get("code", "").lower()
return any(p in code for p in patterns)
Performance Anti-Patterns (Quick Fixes)
1. N+1 Query Problem (Most Common) ⚠️
# ❌ BAD - 1 + N queries (slow!)
def get_users_with_posts():
users = User.query.all() # 1 query
for user in users:
user.posts = Post.query.filter_by(user_id=user.id).all() # N queries!
return users
# Performance: 101 queries for 100 users
# ✅ GOOD - 1 query with JOIN
def get_users_with_posts():
users = User.query.options(joinedload(User.posts)).all() # 1 query
return users
# Performance: 1 query for 100 users
# Or use prefetch
def get_users_with_posts():
users = User.query.all()
user_ids = [u.id for u in users]
posts = Post.query.filter(Post.user_id.in_(user_ids)).all()
# Group posts by user_id manually
return users
Quick Fix: Use joinedload(), selectinload(), or batch fetch.
2. Nested Loops ⚠️
# ❌ BAD - O(n²) complexity
def find_common_items(list1, list2):
common = []
for item1 in list1: # O(n)
for item2 in list2: # O(n)
if item1 == item2:
common.append(item1)
return common
# Performance: 1,000,000 operations for 1000 items each
# ✅ GOOD - O(n) with set
def find_common_items(list1, list2):
return list(set(list1) & set(list2))
# Performance: 2000 operations for 1000 items each
Quick Fix: Use set intersection, dict lookup, or hash map.
3. Inefficient Filtering ⚠️
# ❌ BAD - Fetch all, then filter in Python
def get_active_users():
all_users = User.query.all() # Fetch 10,000 users
active = [u for u in all_users if u.is_active] # Filter in memory
return active
# Performance: 10,000 rows transferred, filtered in Python
# ✅ GOOD - Filter in database
def get_active_users():
return User.query.filter_by(is_active=True).all()
# Performance: Only active users transferred
Quick Fix: Push filtering to database with WHERE clause.
4. Large File Loading ⚠️
# ❌ BAD - Load entire file into memory
def process_large_file(filepath):
with open(filepath) as f:
data = f.read() # 1GB file → 1GB memory!
for line in data.split('\n'):
process_line(line)
# ✅ GOOD - Stream line by line
def process_large_file(filepath):
with open(filepath) as f:
for line in f: # Streaming, ~4KB at a time
process_line(line.strip())
Quick Fix: Stream files instead of loading fully.
5. Missing Pagination ⚠️
# ❌ BAD - Return all 100,000 records
@app.route("/api/users")
def get_users():
return User.query.all() # 100,000 rows!
# ✅ GOOD - Paginate
@app.route("/api/users")
def get_users():
page = request.args.get('page', 1, type=int)
per_page = request.args.get('per_page', 50, type=int)
return User.query.paginate(page=page, per_page=per_page)
Quick Fix: Add pagination to list endpoints.
6. No Caching ⚠️
# ❌ BAD - Recompute every time
def get_top_products():
# Expensive computation every request
products = Product.query.all()
sorted_products = sorted(products, key=lambda p: p.sales, reverse=True)
return sorted_products[:10]
# ✅ GOOD - Cache for 5 minutes
from functools import lru_cache
import time
@lru_cache(maxsize=1)
def get_top_products_cached():
cache_key = int(time.time() // 300) # 5 min buckets
return _compute_top_products()
def _compute_top_products():
products = Product.query.all()
sorted_products = sorted(products, key=lambda p: p.sales, reverse=True)
return sorted_products[:10]
Quick Fix: Add caching for expensive computations.
7. Linear Search in List ⚠️
# ❌ BAD - O(n) lookup
user_ids = [1, 2, 3, ..., 10000] # List
if 9999 in user_ids: # Scans entire list
pass
# ✅ GOOD - O(1) lookup
user_ids = {1, 2, 3, ..., 10000} # Set
if 9999 in user_ids: # Instant lookup
pass
Quick Fix: Use set/dict for lookups instead of list.
8. Synchronous I/O in Loop ⚠️
# ❌ BAD - Sequential API calls (slow)
def fetch_user_data(user_ids):
results = []
for user_id in user_ids: # 100 users
data = requests.get(f"/api/users/{user_id}").json() # 200ms each
results.append(data)
return results
# Performance: 100 × 200ms = 20 seconds!
# ✅ GOOD - Parallel requests
import asyncio
import aiohttp
async def fetch_user_data(user_ids):
async with aiohttp.ClientSession() as session:
tasks = [fetch_one(session, uid) for uid in user_ids]
results = await asyncio.gather(*tasks)
return results
async def fetch_one(session, user_id):
async with session.get(f"/api/users/{user_id}") as resp:
return await resp.json()
# Performance: ~200ms total (parallel)
Quick Fix: Use async/await or threading for I/O-bound operations.
Performance Budget Guidelines
| Operation | Acceptable | Warning | Critical |
|---|---|---|---|
| API response time | <200ms | 200-500ms | >500ms |
| Database query | <50ms | 50-200ms | >200ms |
| List endpoint | <100 items | 100-1000 | >1000 |
| File operation | <1MB | 1-10MB | >10MB |
| Loop iterations | <1000 | 1000-10000 | >10000 |
Output Format
## Performance Report
**Status**: [✅ WITHIN BUDGET | ⚠️ ISSUES FOUND]
---
### Performance Issues: 2
1. **[HIGH] N+1 Query in get_user_posts() (api.py:34)**
- **Issue**: 1 + 100 queries (101 total)
- **Impact**: ~500ms for 100 users
- **Fix**:
```python
# Change this:
users = User.query.all()
for user in users:
user.posts = Post.query.filter_by(user_id=user.id).all()
# To this:
users = User.query.options(joinedload(User.posts)).all()
```
- **Expected**: 500ms → 50ms (10x faster)
2. **[MEDIUM] No pagination on /api/products (routes.py:45)**
- **Issue**: Returns all 5,000 products
- **Impact**: 2MB response, slow load
- **Fix**:
```python
@app.route("/api/products")
def get_products():
page = request.args.get('page', 1, type=int)
return Product.query.paginate(page=page, per_page=50)
```
---
### Optimizations Applied: 1
- ✅ Used set() for user_id lookup (utils.py:23) - O(1) instead of O(n)
---
**Next Steps**:
1. Fix N+1 query with joinedload (5 min fix)
2. Add pagination to /api/products (10 min)
3. Consider adding Redis cache for top products
When to Skip Performance Checks
✅ Skip for:
- Prototypes/POCs
- Admin-only endpoints (low traffic)
- One-time scripts
- Small datasets (<100 items)
⚠️ Always check for:
- Public APIs
- User-facing endpoints
- High-traffic pages
- Data processing pipelines
What This Skill Does NOT Do
❌ Run actual benchmarks (use profiling tools) ❌ Optimize algorithms (focus on anti-patterns) ❌ Check infrastructure (servers, CDN, etc.) ❌ Replace load testing
✅ DOES: Detect common performance anti-patterns with quick fixes.
Configuration
# Strict mode: check all loops and queries
export LAZYDEV_PERF_STRICT=1
# Disable performance checks
export LAZYDEV_DISABLE_PERF_CHECKS=1
# Set custom thresholds
export LAZYDEV_PERF_MAX_QUERY_TIME=100 # ms
export LAZYDEV_PERF_MAX_LOOP_SIZE=5000
Quick Reference: Common Fixes
| Anti-Pattern | Fix | Time Complexity |
|---|---|---|
| N+1 queries | joinedload() |
O(n) → O(1) |
| Nested loops | Use set/dict | O(n²) → O(n) |
| Load full file | Stream lines | O(n) memory → O(1) |
| No pagination | .paginate() |
O(n) → O(page_size) |
| Linear search | Use set | O(n) → O(1) |
| Sync I/O loop | async/await | O(n×t) → O(t) |
Version: 1.0.0 Focus: Database, loops, I/O, caching Speed: <3 seconds per file