Claude Code Plugins

Community-maintained marketplace

Feedback

openrouter-trending-models

@MadAppGang/claude-code
1
0

Fetch trending programming models from OpenRouter rankings. Use when selecting models for multi-model review, updating model recommendations, or researching current AI coding trends. Provides model IDs, context windows, pricing, and usage statistics from the most recent week.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name openrouter-trending-models
description Fetch trending programming models from OpenRouter rankings. Use when selecting models for multi-model review, updating model recommendations, or researching current AI coding trends. Provides model IDs, context windows, pricing, and usage statistics from the most recent week.

OpenRouter Trending Models Skill

Overview

This skill provides access to current trending programming models from OpenRouter's public rankings. It executes a Bun script that fetches, parses, and structures data about the top 9 most-used AI models for programming tasks.

What you get:

  • Model IDs and names (e.g., x-ai/grok-code-fast-1)
  • Token usage statistics (last week's trends)
  • Context window sizes (input capacity)
  • Pricing information (per token and per 1M tokens)
  • Summary statistics (top provider, price ranges, averages)

Data Source:

Update Frequency: Weekly (OpenRouter updates rankings every week)


When to Use This Skill

Use this skill when you need to:

  1. Select models for multi-model review

    • Plan reviewer needs current trending models
    • User asks "which models should I use for review?"
    • Updating model recommendations in agent workflows
  2. Research AI coding trends

    • Developer wants to know most popular coding models
    • Comparing model capabilities (context, pricing, usage)
    • Identifying "best value" models for specific tasks
  3. Update plugin documentation

    • Refreshing model lists in README files
    • Keeping agent prompts current with trending models
    • Documentation maintenance workflows
  4. Cost optimization

    • Finding cheapest models with sufficient context
    • Comparing pricing across trending models
    • Budget planning for AI-assisted development
  5. Model recommendations

    • User asks "what's the best model for X?"
    • Providing data-driven suggestions vs hardcoded lists
    • Offering alternatives based on requirements

Quick Start

Running the Script

Basic Usage:

bun run scripts/get-trending-models.ts

Output to File:

bun run scripts/get-trending-models.ts > trending-models.json

Pretty Print:

bun run scripts/get-trending-models.ts | jq '.'

Help:

bun run scripts/get-trending-models.ts --help

Expected Output

The script outputs structured JSON to stdout:

{
  "metadata": {
    "fetchedAt": "2025-11-14T10:30:00.000Z",
    "weekEnding": "2025-11-10",
    "category": "programming",
    "view": "trending"
  },
  "models": [
    {
      "rank": 1,
      "id": "x-ai/grok-code-fast-1",
      "name": "Grok Code Fast",
      "tokenUsage": 908664328688,
      "contextLength": 131072,
      "maxCompletionTokens": 32768,
      "pricing": {
        "prompt": 0.0000005,
        "completion": 0.000001,
        "promptPer1M": 0.5,
        "completionPer1M": 1.0
      }
    }
    // ... 8 more models
  ],
  "summary": {
    "totalTokens": 4500000000000,
    "topProvider": "x-ai",
    "averageContextLength": 98304,
    "priceRange": {
      "min": 0.5,
      "max": 15.0,
      "unit": "USD per 1M tokens"
    }
  }
}

Execution Time

Typical execution: 2-5 seconds

  • Fetch rankings: ~1 second
  • Fetch model details: ~1-2 seconds (parallel requests)
  • Parse and format: <1 second

Output Format

Metadata Object

{
  fetchedAt: string;        // ISO 8601 timestamp of when data was fetched
  weekEnding: string;       // YYYY-MM-DD format, end of ranking week
  category: "programming";  // Fixed category
  view: "trending";         // Fixed view type
}

Models Array (9 items)

Each model contains:

{
  rank: number;             // 1-9, position in trending list
  id: string;               // OpenRouter model ID (e.g., "x-ai/grok-code-fast-1")
  name: string;             // Human-readable name (e.g., "Grok Code Fast")
  tokenUsage: number;       // Total tokens used last week
  contextLength: number;    // Maximum input tokens
  maxCompletionTokens: number; // Maximum output tokens
  pricing: {
    prompt: number;         // Per-token input cost (USD)
    completion: number;     // Per-token output cost (USD)
    promptPer1M: number;    // Input cost per 1M tokens (USD)
    completionPer1M: number; // Output cost per 1M tokens (USD)
  }
}

Summary Object

{
  totalTokens: number;      // Sum of token usage across top 9 models
  topProvider: string;      // Most represented provider (e.g., "x-ai")
  averageContextLength: number; // Average context window size
  priceRange: {
    min: number;            // Lowest prompt price per 1M tokens
    max: number;            // Highest prompt price per 1M tokens
    unit: "USD per 1M tokens";
  }
}

Integration Examples

Example 1: Dynamic Model Selection in Agent

Scenario: Plan reviewer needs current trending models for multi-model review

# In plan-reviewer agent workflow

STEP 1: Fetch trending models
- Execute: Bash("bun run scripts/get-trending-models.ts > /tmp/trending-models.json")
- Read: /tmp/trending-models.json

STEP 2: Parse and present to user
- Extract top 3-5 models from models array
- Display with context and pricing info
- Let user select preferred model(s)

STEP 3: Use selected model for review
- Pass model ID to Claudish proxy

Implementation:

// Agent reads output
const data = JSON.parse(bashOutput);

// Extract top 5 models
const topModels = data.models.slice(0, 5);

// Present to user
const modelList = topModels.map((m, i) =>
  `${i + 1}. **${m.name}** (\`${m.id}\`)
   - Context: ${m.contextLength.toLocaleString()} tokens
   - Pricing: $${m.pricing.promptPer1M}/1M input
   - Usage: ${(m.tokenUsage / 1e9).toFixed(1)}B tokens last week`
).join('\n\n');

// Ask user to select
const userChoice = await AskUserQuestion(`Select model for review:\n\n${modelList}`);

Example 2: Find Best Value Models

Scenario: User wants high-context models at lowest cost

# Fetch models and filter with jq
bun run scripts/get-trending-models.ts | jq '
  .models
  | map(select(.contextLength > 100000))
  | sort_by(.pricing.promptPer1M)
  | .[:3]
  | .[] | {
      name,
      id,
      contextLength,
      price: .pricing.promptPer1M
    }
'

Output:

{
  "name": "Gemini 2.5 Flash",
  "id": "google/gemini-2.5-flash",
  "contextLength": 1000000,
  "price": 0.075
}
{
  "name": "Grok Code Fast",
  "id": "x-ai/grok-code-fast-1",
  "contextLength": 131072,
  "price": 0.5
}

Example 3: Update Plugin Documentation

Scenario: Automated weekly update of README model recommendations

# Fetch models
bun run scripts/get-trending-models.ts > trending.json

# Extract top 5 model names and IDs
jq -r '.models[:5] | .[] | "- `\(.id)` - \(.name) (\(.contextLength / 1024)K context, $\(.pricing.promptPer1M)/1M)"' trending.json

# Output (ready for README):
# - `x-ai/grok-code-fast-1` - Grok Code Fast (128K context, $0.5/1M)
# - `anthropic/claude-4.5-sonnet-20250929` - Claude 4.5 Sonnet (200K context, $3.0/1M)
# - `google/gemini-2.5-flash` - Gemini 2.5 Flash (976K context, $0.075/1M)

Example 4: Check for New Trending Models

Scenario: Identify when new models enter top 9

# Save current trending models
bun run scripts/get-trending-models.ts | jq '.models | map(.id)' > current.json

# Compare with previous week (saved as previous.json)
diff <(jq -r '.[]' previous.json | sort) <(jq -r '.[]' current.json | sort)

# Output shows new entries (>) and removed entries (<)

Troubleshooting

Issue: Script Fails to Fetch Rankings

Error Message:

✗ Error: Failed to fetch rankings: fetch failed

Possible Causes:

  1. No internet connection
  2. OpenRouter site is down
  3. Firewall blocking openrouter.ai
  4. URL structure changed

Solutions:

  1. Test connectivity:
curl -I https://openrouter.ai/rankings
# Should return HTTP 200
  1. Check URL in browser:

  2. Check firewall/proxy:

# Test from command line
curl "https://openrouter.ai/rankings?category=programming&view=trending&_rsc=2nz0s"
# Should return HTML with embedded JSON
  1. Use fallback data:
    • Keep last successful output as fallback
    • Use cached trending-models.json if < 14 days old

Issue: Parse Error (Invalid RSC Format)

Error Message:

✗ Error: Failed to extract JSON from RSC format

Cause: OpenRouter changed their page structure

Solutions:

  1. Inspect raw HTML:
curl "https://openrouter.ai/rankings?category=programming&view=trending&_rsc=2nz0s" | head -200
  1. Look for data pattern:

    • Search for "data":[{ in output
    • Check if line starts with different prefix (not 1b:)
    • Verify JSON structure matches expected format
  2. Update regex in script:

    • Edit scripts/get-trending-models.ts
    • Modify regex in fetchRankings() function
    • Test with new pattern
  3. Report issue:

    • File issue in plugin repository
    • Include raw HTML sample (first 500 chars)
    • Specify when error started occurring

Issue: Model Details Not Found

Warning Message:

Warning: Model x-ai/grok-code-fast-1 not found in API, using defaults

Cause: Model ID in rankings doesn't match API

Impact: Model will have 0 values for context/pricing

Solutions:

  1. Verify model exists in API:
curl "https://openrouter.ai/api/v1/models" | jq '.data[] | select(.id == "x-ai/grok-code-fast-1")'
  1. Check for ID mismatches:

    • Rankings may use different ID format
    • API might have model under different name
    • Model may be new and not yet in API
  2. Manual correction:

    • Edit output JSON file
    • Add correct details from OpenRouter website
    • Note discrepancy for future fixes

Issue: Stale Data Warning

Symptom: Models seem outdated compared to OpenRouter site

Check data age:

jq '.metadata.fetchedAt' trending-models.json
# Compare with current date

Solutions:

  1. Re-run script:
bun run scripts/get-trending-models.ts > trending-models.json
  1. Set up weekly refresh:

    • Add to cron: 0 0 * * 1 cd /path/to/repo && bun run scripts/get-trending-models.ts > skills/openrouter-trending-models/trending-models.json
    • Or use GitHub Actions (see Automation section)
  2. Add staleness check in agents:

const data = JSON.parse(readFile("trending-models.json"));
const fetchedDate = new Date(data.metadata.fetchedAt);
const daysSinceUpdate = (Date.now() - fetchedDate.getTime()) / (1000 * 60 * 60 * 24);

if (daysSinceUpdate > 7) {
  console.warn("Data is over 7 days old, consider refreshing");
}

Best Practices

Data Freshness

Recommended Update Schedule:

  • Weekly: Ideal (matches OpenRouter update cycle)
  • Bi-weekly: Acceptable for stable periods
  • Monthly: Minimum for production use

Staleness Guidelines:

  • 0-7 days: Fresh (green)
  • 8-14 days: Slightly stale (yellow)
  • 15-30 days: Stale (orange)
  • 30+ days: Very stale (red)

Caching Strategy

When to cache:

  • Multiple agents need same data
  • Frequent model selection workflows
  • Avoiding rate limits

How to cache:

  1. Run script once: bun run scripts/get-trending-models.ts > trending-models.json
  2. Commit to repository (under skills/openrouter-trending-models/)
  3. Agents read from file instead of re-running script
  4. Refresh weekly via manual run or automation

Cache invalidation:

# Check if cache is stale (> 7 days)
if [ $(find trending-models.json -mtime +7) ]; then
  echo "Cache is stale, refreshing..."
  bun run scripts/get-trending-models.ts > trending-models.json
fi

Error Handling in Agents

Graceful degradation pattern:

1. Try to fetch fresh data
   - Run: bun run scripts/get-trending-models.ts
   - If succeeds: Use fresh data
   - If fails: Continue to step 2

2. Try cached data
   - Check if trending-models.json exists
   - Check if < 14 days old
   - If valid: Use cached data
   - If not: Continue to step 3

3. Fallback to hardcoded models
   - Use known good models from agent prompt
   - Warn user data may be outdated
   - Suggest manual refresh

Integration Patterns

Pattern 1: On-Demand (Fresh Data)

# Run before each use
bun run scripts/get-trending-models.ts > /tmp/models.json
# Read from /tmp/models.json

Pattern 2: Cached (Fast Access)

# Check cache age first
CACHE_FILE="skills/openrouter-trending-models/trending-models.json"
if [ ! -f "$CACHE_FILE" ] || [ $(find "$CACHE_FILE" -mtime +7) ]; then
  bun run scripts/get-trending-models.ts > "$CACHE_FILE"
fi
# Read from cache

Pattern 3: Background Refresh (Non-Blocking)

# Start refresh in background (don't wait)
bun run scripts/get-trending-models.ts > trending-models.json &

# Continue with workflow
# Use cached data if available
# Fresh data will be ready for next run

Changelog

v1.0.0 (2025-11-14)

  • Initial release
  • Fetch top 9 trending programming models from OpenRouter
  • Parse RSC streaming format
  • Include context length, pricing, and token usage
  • Zero dependencies (Bun built-in APIs only)
  • Comprehensive error handling
  • Summary statistics (total tokens, top provider, price range)

Future Enhancements

Planned Features

  • Category selection (programming, creative, analysis, etc.)
  • Historical trend tracking (compare week-over-week)
  • Provider filtering (focus on specific providers)
  • Cost calculator (estimate workflow costs)

Research Ideas

  • Correlate rankings with model performance benchmarks
  • Identify "best value" models (performance/price ratio)
  • Predict upcoming trending models
  • Multi-category analysis

Skill Version: 1.0.0 Last Updated: November 14, 2025 Maintenance: Weekly refresh recommended Dependencies: Bun runtime, internet connection