| name | openrouter-trending-models |
| description | Fetch trending programming models from OpenRouter rankings. Use when selecting models for multi-model review, updating model recommendations, or researching current AI coding trends. Provides model IDs, context windows, pricing, and usage statistics from the most recent week. |
OpenRouter Trending Models Skill
Overview
This skill provides access to current trending programming models from OpenRouter's public rankings. It executes a Bun script that fetches, parses, and structures data about the top 9 most-used AI models for programming tasks.
What you get:
- Model IDs and names (e.g.,
x-ai/grok-code-fast-1) - Token usage statistics (last week's trends)
- Context window sizes (input capacity)
- Pricing information (per token and per 1M tokens)
- Summary statistics (top provider, price ranges, averages)
Data Source:
- OpenRouter Rankings (https://openrouter.ai/rankings?category=programming)
- OpenRouter Models API (https://openrouter.ai/api/v1/models)
Update Frequency: Weekly (OpenRouter updates rankings every week)
When to Use This Skill
Use this skill when you need to:
Select models for multi-model review
- Plan reviewer needs current trending models
- User asks "which models should I use for review?"
- Updating model recommendations in agent workflows
Research AI coding trends
- Developer wants to know most popular coding models
- Comparing model capabilities (context, pricing, usage)
- Identifying "best value" models for specific tasks
Update plugin documentation
- Refreshing model lists in README files
- Keeping agent prompts current with trending models
- Documentation maintenance workflows
Cost optimization
- Finding cheapest models with sufficient context
- Comparing pricing across trending models
- Budget planning for AI-assisted development
Model recommendations
- User asks "what's the best model for X?"
- Providing data-driven suggestions vs hardcoded lists
- Offering alternatives based on requirements
Quick Start
Running the Script
Basic Usage:
bun run scripts/get-trending-models.ts
Output to File:
bun run scripts/get-trending-models.ts > trending-models.json
Pretty Print:
bun run scripts/get-trending-models.ts | jq '.'
Help:
bun run scripts/get-trending-models.ts --help
Expected Output
The script outputs structured JSON to stdout:
{
"metadata": {
"fetchedAt": "2025-11-14T10:30:00.000Z",
"weekEnding": "2025-11-10",
"category": "programming",
"view": "trending"
},
"models": [
{
"rank": 1,
"id": "x-ai/grok-code-fast-1",
"name": "Grok Code Fast",
"tokenUsage": 908664328688,
"contextLength": 131072,
"maxCompletionTokens": 32768,
"pricing": {
"prompt": 0.0000005,
"completion": 0.000001,
"promptPer1M": 0.5,
"completionPer1M": 1.0
}
}
// ... 8 more models
],
"summary": {
"totalTokens": 4500000000000,
"topProvider": "x-ai",
"averageContextLength": 98304,
"priceRange": {
"min": 0.5,
"max": 15.0,
"unit": "USD per 1M tokens"
}
}
}
Execution Time
Typical execution: 2-5 seconds
- Fetch rankings: ~1 second
- Fetch model details: ~1-2 seconds (parallel requests)
- Parse and format: <1 second
Output Format
Metadata Object
{
fetchedAt: string; // ISO 8601 timestamp of when data was fetched
weekEnding: string; // YYYY-MM-DD format, end of ranking week
category: "programming"; // Fixed category
view: "trending"; // Fixed view type
}
Models Array (9 items)
Each model contains:
{
rank: number; // 1-9, position in trending list
id: string; // OpenRouter model ID (e.g., "x-ai/grok-code-fast-1")
name: string; // Human-readable name (e.g., "Grok Code Fast")
tokenUsage: number; // Total tokens used last week
contextLength: number; // Maximum input tokens
maxCompletionTokens: number; // Maximum output tokens
pricing: {
prompt: number; // Per-token input cost (USD)
completion: number; // Per-token output cost (USD)
promptPer1M: number; // Input cost per 1M tokens (USD)
completionPer1M: number; // Output cost per 1M tokens (USD)
}
}
Summary Object
{
totalTokens: number; // Sum of token usage across top 9 models
topProvider: string; // Most represented provider (e.g., "x-ai")
averageContextLength: number; // Average context window size
priceRange: {
min: number; // Lowest prompt price per 1M tokens
max: number; // Highest prompt price per 1M tokens
unit: "USD per 1M tokens";
}
}
Integration Examples
Example 1: Dynamic Model Selection in Agent
Scenario: Plan reviewer needs current trending models for multi-model review
# In plan-reviewer agent workflow
STEP 1: Fetch trending models
- Execute: Bash("bun run scripts/get-trending-models.ts > /tmp/trending-models.json")
- Read: /tmp/trending-models.json
STEP 2: Parse and present to user
- Extract top 3-5 models from models array
- Display with context and pricing info
- Let user select preferred model(s)
STEP 3: Use selected model for review
- Pass model ID to Claudish proxy
Implementation:
// Agent reads output
const data = JSON.parse(bashOutput);
// Extract top 5 models
const topModels = data.models.slice(0, 5);
// Present to user
const modelList = topModels.map((m, i) =>
`${i + 1}. **${m.name}** (\`${m.id}\`)
- Context: ${m.contextLength.toLocaleString()} tokens
- Pricing: $${m.pricing.promptPer1M}/1M input
- Usage: ${(m.tokenUsage / 1e9).toFixed(1)}B tokens last week`
).join('\n\n');
// Ask user to select
const userChoice = await AskUserQuestion(`Select model for review:\n\n${modelList}`);
Example 2: Find Best Value Models
Scenario: User wants high-context models at lowest cost
# Fetch models and filter with jq
bun run scripts/get-trending-models.ts | jq '
.models
| map(select(.contextLength > 100000))
| sort_by(.pricing.promptPer1M)
| .[:3]
| .[] | {
name,
id,
contextLength,
price: .pricing.promptPer1M
}
'
Output:
{
"name": "Gemini 2.5 Flash",
"id": "google/gemini-2.5-flash",
"contextLength": 1000000,
"price": 0.075
}
{
"name": "Grok Code Fast",
"id": "x-ai/grok-code-fast-1",
"contextLength": 131072,
"price": 0.5
}
Example 3: Update Plugin Documentation
Scenario: Automated weekly update of README model recommendations
# Fetch models
bun run scripts/get-trending-models.ts > trending.json
# Extract top 5 model names and IDs
jq -r '.models[:5] | .[] | "- `\(.id)` - \(.name) (\(.contextLength / 1024)K context, $\(.pricing.promptPer1M)/1M)"' trending.json
# Output (ready for README):
# - `x-ai/grok-code-fast-1` - Grok Code Fast (128K context, $0.5/1M)
# - `anthropic/claude-4.5-sonnet-20250929` - Claude 4.5 Sonnet (200K context, $3.0/1M)
# - `google/gemini-2.5-flash` - Gemini 2.5 Flash (976K context, $0.075/1M)
Example 4: Check for New Trending Models
Scenario: Identify when new models enter top 9
# Save current trending models
bun run scripts/get-trending-models.ts | jq '.models | map(.id)' > current.json
# Compare with previous week (saved as previous.json)
diff <(jq -r '.[]' previous.json | sort) <(jq -r '.[]' current.json | sort)
# Output shows new entries (>) and removed entries (<)
Troubleshooting
Issue: Script Fails to Fetch Rankings
Error Message:
✗ Error: Failed to fetch rankings: fetch failed
Possible Causes:
- No internet connection
- OpenRouter site is down
- Firewall blocking openrouter.ai
- URL structure changed
Solutions:
- Test connectivity:
curl -I https://openrouter.ai/rankings
# Should return HTTP 200
Check URL in browser:
- Visit https://openrouter.ai/rankings
- Verify page loads and shows programming rankings
- If URL redirects, update RANKINGS_URL constant in script
Check firewall/proxy:
# Test from command line
curl "https://openrouter.ai/rankings?category=programming&view=trending&_rsc=2nz0s"
# Should return HTML with embedded JSON
- Use fallback data:
- Keep last successful output as fallback
- Use cached trending-models.json if < 14 days old
Issue: Parse Error (Invalid RSC Format)
Error Message:
✗ Error: Failed to extract JSON from RSC format
Cause: OpenRouter changed their page structure
Solutions:
- Inspect raw HTML:
curl "https://openrouter.ai/rankings?category=programming&view=trending&_rsc=2nz0s" | head -200
Look for data pattern:
- Search for
"data":[{in output - Check if line starts with different prefix (not
1b:) - Verify JSON structure matches expected format
- Search for
Update regex in script:
- Edit
scripts/get-trending-models.ts - Modify regex in
fetchRankings()function - Test with new pattern
- Edit
Report issue:
- File issue in plugin repository
- Include raw HTML sample (first 500 chars)
- Specify when error started occurring
Issue: Model Details Not Found
Warning Message:
Warning: Model x-ai/grok-code-fast-1 not found in API, using defaults
Cause: Model ID in rankings doesn't match API
Impact: Model will have 0 values for context/pricing
Solutions:
- Verify model exists in API:
curl "https://openrouter.ai/api/v1/models" | jq '.data[] | select(.id == "x-ai/grok-code-fast-1")'
Check for ID mismatches:
- Rankings may use different ID format
- API might have model under different name
- Model may be new and not yet in API
Manual correction:
- Edit output JSON file
- Add correct details from OpenRouter website
- Note discrepancy for future fixes
Issue: Stale Data Warning
Symptom: Models seem outdated compared to OpenRouter site
Check data age:
jq '.metadata.fetchedAt' trending-models.json
# Compare with current date
Solutions:
- Re-run script:
bun run scripts/get-trending-models.ts > trending-models.json
Set up weekly refresh:
- Add to cron:
0 0 * * 1 cd /path/to/repo && bun run scripts/get-trending-models.ts > skills/openrouter-trending-models/trending-models.json - Or use GitHub Actions (see Automation section)
- Add to cron:
Add staleness check in agents:
const data = JSON.parse(readFile("trending-models.json"));
const fetchedDate = new Date(data.metadata.fetchedAt);
const daysSinceUpdate = (Date.now() - fetchedDate.getTime()) / (1000 * 60 * 60 * 24);
if (daysSinceUpdate > 7) {
console.warn("Data is over 7 days old, consider refreshing");
}
Best Practices
Data Freshness
Recommended Update Schedule:
- Weekly: Ideal (matches OpenRouter update cycle)
- Bi-weekly: Acceptable for stable periods
- Monthly: Minimum for production use
Staleness Guidelines:
- 0-7 days: Fresh (green)
- 8-14 days: Slightly stale (yellow)
- 15-30 days: Stale (orange)
- 30+ days: Very stale (red)
Caching Strategy
When to cache:
- Multiple agents need same data
- Frequent model selection workflows
- Avoiding rate limits
How to cache:
- Run script once:
bun run scripts/get-trending-models.ts > trending-models.json - Commit to repository (under
skills/openrouter-trending-models/) - Agents read from file instead of re-running script
- Refresh weekly via manual run or automation
Cache invalidation:
# Check if cache is stale (> 7 days)
if [ $(find trending-models.json -mtime +7) ]; then
echo "Cache is stale, refreshing..."
bun run scripts/get-trending-models.ts > trending-models.json
fi
Error Handling in Agents
Graceful degradation pattern:
1. Try to fetch fresh data
- Run: bun run scripts/get-trending-models.ts
- If succeeds: Use fresh data
- If fails: Continue to step 2
2. Try cached data
- Check if trending-models.json exists
- Check if < 14 days old
- If valid: Use cached data
- If not: Continue to step 3
3. Fallback to hardcoded models
- Use known good models from agent prompt
- Warn user data may be outdated
- Suggest manual refresh
Integration Patterns
Pattern 1: On-Demand (Fresh Data)
# Run before each use
bun run scripts/get-trending-models.ts > /tmp/models.json
# Read from /tmp/models.json
Pattern 2: Cached (Fast Access)
# Check cache age first
CACHE_FILE="skills/openrouter-trending-models/trending-models.json"
if [ ! -f "$CACHE_FILE" ] || [ $(find "$CACHE_FILE" -mtime +7) ]; then
bun run scripts/get-trending-models.ts > "$CACHE_FILE"
fi
# Read from cache
Pattern 3: Background Refresh (Non-Blocking)
# Start refresh in background (don't wait)
bun run scripts/get-trending-models.ts > trending-models.json &
# Continue with workflow
# Use cached data if available
# Fresh data will be ready for next run
Changelog
v1.0.0 (2025-11-14)
- Initial release
- Fetch top 9 trending programming models from OpenRouter
- Parse RSC streaming format
- Include context length, pricing, and token usage
- Zero dependencies (Bun built-in APIs only)
- Comprehensive error handling
- Summary statistics (total tokens, top provider, price range)
Future Enhancements
Planned Features
- Category selection (programming, creative, analysis, etc.)
- Historical trend tracking (compare week-over-week)
- Provider filtering (focus on specific providers)
- Cost calculator (estimate workflow costs)
Research Ideas
- Correlate rankings with model performance benchmarks
- Identify "best value" models (performance/price ratio)
- Predict upcoming trending models
- Multi-category analysis
Skill Version: 1.0.0 Last Updated: November 14, 2025 Maintenance: Weekly refresh recommended Dependencies: Bun runtime, internet connection