Claude Code Plugins

Community-maintained marketplace

Feedback
204
0

Audio/video transcription using OpenAI Whisper. Covers installation, model selection, transcript formats (SRT, VTT, JSON), timing synchronization, and speaker diarization. Use when transcribing media or generating subtitles.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name transcription
description Audio/video transcription using OpenAI Whisper. Covers installation, model selection, transcript formats (SRT, VTT, JSON), timing synchronization, and speaker diarization. Use when transcribing media or generating subtitles.

Transcription with Whisper

Production-ready patterns for audio/video transcription using OpenAI Whisper.

System Requirements

Installation Options

Option 1: OpenAI Whisper (Python)

# macOS/Linux/Windows
pip install openai-whisper

# Verify
whisper --help

Option 2: whisper.cpp (C++ - faster)

# macOS
brew install whisper-cpp

# Linux - build from source
git clone https://github.com/ggerganov/whisper.cpp
cd whisper.cpp && make

# Windows - use pre-built binaries or build with cmake

Option 3: Insanely Fast Whisper (GPU accelerated)

pip install insanely-fast-whisper

Model Selection

Model Size VRAM Accuracy Speed Use Case
tiny 39M ~1GB Low Fastest Quick previews
base 74M ~1GB Medium Fast Draft transcripts
small 244M ~2GB Good Medium General use
medium 769M ~5GB Better Slow Quality transcripts
large-v3 1550M ~10GB Best Slowest Final production

Recommendation: Start with small for speed/quality balance. Use large-v3 for final delivery.

Basic Transcription

Using OpenAI Whisper

# Basic transcription (auto-detect language)
whisper audio.mp3 --model small

# Specify language and output format
whisper audio.mp3 --model medium --language en --output_format srt

# Multiple output formats
whisper audio.mp3 --model small --output_format all

# With timestamps and word-level timing
whisper audio.mp3 --model small --word_timestamps True

Using whisper.cpp

# Download model first
./models/download-ggml-model.sh base.en

# Transcribe
./main -m models/ggml-base.en.bin -f audio.wav -osrt

# With timestamps
./main -m models/ggml-base.en.bin -f audio.wav -ocsv

Output Formats

SRT (SubRip Subtitle)

1
00:00:01,000 --> 00:00:04,500
Hello and welcome to this video.

2
00:00:05,000 --> 00:00:08,200
Today we'll discuss video editing.

VTT (WebVTT)

WEBVTT

00:00:01.000 --> 00:00:04.500
Hello and welcome to this video.

00:00:05.000 --> 00:00:08.200
Today we'll discuss video editing.

JSON (with word-level timing)

{
  "text": "Hello and welcome to this video.",
  "segments": [
    {
      "id": 0,
      "start": 1.0,
      "end": 4.5,
      "text": " Hello and welcome to this video.",
      "words": [
        {"word": "Hello", "start": 1.0, "end": 1.3},
        {"word": "and", "start": 1.4, "end": 1.5},
        {"word": "welcome", "start": 1.6, "end": 2.0},
        {"word": "to", "start": 2.1, "end": 2.2},
        {"word": "this", "start": 2.3, "end": 2.5},
        {"word": "video", "start": 2.6, "end": 3.0}
      ]
    }
  ]
}

Audio Extraction for Transcription

Before transcribing video, extract audio in optimal format:

# Extract audio as WAV (16kHz, mono - optimal for Whisper)
ffmpeg -i video.mp4 -ar 16000 -ac 1 -c:a pcm_s16le audio.wav

# Extract as high-quality WAV for archival
ffmpeg -i video.mp4 -vn -c:a pcm_s16le audio.wav

# Extract as compressed MP3 (smaller, still works)
ffmpeg -i video.mp4 -vn -c:a libmp3lame -q:a 2 audio.mp3

Timing Synchronization

Convert Whisper JSON to FCP Timing

import json

def whisper_to_fcp_timing(whisper_json_path, fps=24):
    """Convert Whisper JSON output to FCP-compatible timing."""
    with open(whisper_json_path) as f:
        data = json.load(f)

    segments = []
    for seg in data.get("segments", []):
        segments.append({
            "start_time": seg["start"],
            "end_time": seg["end"],
            "start_frame": int(seg["start"] * fps),
            "end_frame": int(seg["end"] * fps),
            "text": seg["text"].strip(),
            "words": seg.get("words", [])
        })

    return segments

Frame-Accurate Timing

# Get exact frame count and duration
ffprobe -v error -count_frames -select_streams v:0 \
  -show_entries stream=nb_read_frames,duration,r_frame_rate \
  -of json video.mp4

Speaker Diarization

For multi-speaker content, use pyannote.audio:

pip install pyannote.audio
from pyannote.audio import Pipeline

pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1")
diarization = pipeline("audio.wav")

for turn, _, speaker in diarization.itertracks(yield_label=True):
    print(f"{turn.start:.1f}s - {turn.end:.1f}s: {speaker}")

Batch Processing

#!/bin/bash
# Transcribe all videos in directory

MODEL="small"
OUTPUT_DIR="transcripts"
mkdir -p "$OUTPUT_DIR"

for video in *.mp4 *.mov *.avi; do
  [[ -f "$video" ]] || continue

  base="${video%.*}"

  # Extract audio
  ffmpeg -i "$video" -ar 16000 -ac 1 -c:a pcm_s16le "/tmp/${base}.wav" -y

  # Transcribe
  whisper "/tmp/${base}.wav" --model "$MODEL" \
    --output_format all \
    --output_dir "$OUTPUT_DIR"

  # Cleanup temp audio
  rm "/tmp/${base}.wav"

  echo "Transcribed: $video"
done

Quality Optimization

Improve Accuracy

  1. Noise reduction before transcription:
ffmpeg -i noisy_audio.wav -af "highpass=f=200,lowpass=f=3000,afftdn=nf=-25" clean_audio.wav
  1. Use language hint:
whisper audio.mp3 --language en --model medium
  1. Provide initial prompt for context:
whisper audio.mp3 --initial_prompt "Technical discussion about video editing software."

Performance Tips

  1. GPU acceleration (if available):
whisper audio.mp3 --model large-v3 --device cuda
  1. Process in chunks for long videos:
# Split audio into 10-minute chunks
# Transcribe each chunk
# Merge results with time offset adjustment

Error Handling

# Validate audio file before transcription
validate_audio() {
  local file="$1"
  if ffprobe -v error -select_streams a:0 -show_entries stream=codec_type -of csv=p=0 "$file" 2>/dev/null | grep -q "audio"; then
    return 0
  else
    echo "Error: No audio stream found in $file"
    return 1
  fi
}

# Check Whisper installation
check_whisper() {
  if command -v whisper &> /dev/null; then
    echo "Whisper available"
    return 0
  else
    echo "Error: Whisper not installed. Run: pip install openai-whisper"
    return 1
  fi
}

Related Skills

  • ffmpeg-core - Audio extraction and preprocessing
  • final-cut-pro - Import transcripts as titles/markers