Claude Code Plugins

Community-maintained marketplace

Feedback

Generate intelligent Python project documentation with UML class diagrams, architecture diagrams, and code analysis. Analyzes codebase structure to recommend and create appropriate visualizations for project overview.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name kc-docs
description Generate intelligent Python project documentation with UML class diagrams, architecture diagrams, and code analysis. Analyzes codebase structure to recommend and create appropriate visualizations for project overview.
allowed-tools Read, Grep, Glob, Bash(python:*), Write, Edit

KC Documentation Generator

Generate comprehensive project documentation with architecture diagrams and class visualizations for Python projects.

Overview

This skill analyzes your Python codebase and automatically generates:

  • Architecture diagrams - System component overview (Mermaid)
  • Class diagrams - OOP structure and relationships (PlantUML + pyreverse)
  • Documentation - Auto-generated API and structure reference
  • Analysis reports - Codebase metrics and complexity

Best for: Understanding large codebases quickly, onboarding new team members, project documentation.


Quick Start

Generate Full Documentation

/kc-docs generate <project_path>

Analyzes your project and creates inside the project:

  • <project_path>/docs/diagrams/generated/ - All diagrams
  • <project_path>/docs/ARCHITECTURE.md - System overview
  • <project_path>/docs/API_REFERENCE.md - Classes and functions

Documentation stays with your code in version control!

View Generated Diagrams

/kc-docs view <project_path>

Opens a browser preview of all generated diagrams and documentation.

Analyze Project Only

/kc-docs analyze <project_path>

Examines codebase structure without generating diagrams. Returns:

  • Number of modules and packages
  • Classes and functions count
  • Recommended diagram types
  • Complexity assessment

Supported Diagram Types

1. Architecture Diagram (Mermaid)

  • Shows: System components and their relationships
  • Best for: High-level system understanding
  • Recommended when: Project has multiple modules or packages

2. Class Diagram (PlantUML)

  • Shows: Classes, inheritance, relationships
  • Best for: OOP structure understanding
  • Recommended when: Project has >5 classes or deep inheritance

3. Module Dependency Graph

  • Shows: How modules import each other
  • Best for: Understanding coupling and architecture
  • Recommended when: Project has multiple interconnected modules

4. Auto-generated from Code (pyreverse)

  • Shows: Exact class structure from source code
  • Best for: Staying in sync with actual code
  • Recommended always: Automatic accuracy

Usage Examples

Example 1: Document an Existing Project

/kc-docs generate ~/myproject
# Generates inside ~/myproject/:
# - ~/myproject/docs/diagrams/generated/architecture.svg
# - ~/myproject/docs/diagrams/generated/classes_*.svg
# - ~/myproject/docs/ARCHITECTURE.md
# - ~/myproject/docs/API_REFERENCE.md

Example 2: Analyze Before Documenting

/kc-docs analyze ~/myproject/src
# Output:
# Project Analysis Results:
# - Total modules: 12
# - Total classes: 45
# - Total functions: 156
# - Recommended diagrams: [architecture, class_diagram, dependencies]
# - Complexity: MEDIUM

Example 3: Update Documentation When Code Changes

/kc-docs generate ~/myproject/src --force
# Forces regeneration of all diagrams (not using cache)

How It Works

Analysis Phase

  1. Scan Python files for structure (modules, classes, functions)
  2. Extract relationships and dependencies
  3. Categorize code complexity and architecture patterns
  4. Recommend which diagrams would be most useful

Generation Phase

  1. Create Mermaid architecture diagrams
  2. Generate UML class diagrams using PlantUML
  3. Auto-generate exact class structure with pyreverse
  4. Render SVG outputs for viewing
  5. Create markdown documentation with embedded diagrams

Output Structure

docs/
├── diagrams/
│   ├── src/                    # Source diagram definitions
│   │   ├── architecture.mmd    # Mermaid architecture
│   │   └── classes.puml        # PlantUML class diagram
│   └── generated/              # Rendered outputs (gitignored)
│       ├── architecture.svg
│       ├── classes.svg
│       └── dependencies.svg
├── ARCHITECTURE.md              # System overview
├── API_REFERENCE.md             # Classes and functions
└── ANALYSIS_REPORT.md           # Code metrics

Configuration

Create .kc-docs.yaml in your project root to customize:

# .kc-docs.yaml
analysis:
  min_classes_for_diagram: 5    # Only create diagram if > 5 classes
  include_private: false         # Exclude private methods/classes
  max_depth: 3                   # Maximum folder depth to scan

output:
  format: [svg, png, html]       # Output formats
  theme: light                   # light or dark
  documentation: true            # Generate markdown docs

diagrams:
  architecture: true             # Generate architecture diagram
  classes: true                  # Generate class diagram
  dependencies: true             # Generate dependency graph
  sequences: false               # Generate sequence diagrams (if complex flows)

Viewing Diagrams

In Cursor (Markdown Preview)

  1. Open docs/ARCHITECTURE.md
  2. Use Ctrl+Shift+V to preview
  3. Click SVG links to view diagrams

In Browser

# View all diagrams in browser
python ~/.claude/skills/kc-docs/scripts/serve_docs.py docs/
# Opens: http://localhost:8000

Direct Files

  • Diagrams are SVG files → Open in any browser
  • PDFs available → Use for printing/sharing
  • PNG files available → For embedding in docs

Requirements

Installed Tools

  • Python 3.8+
  • Mermaid CLI (auto-installed if missing)
  • PlantUML (auto-installed if missing)
  • pyreverse (from pylint package)

Project Structure

  • Standard Python project layout
  • Readable Python files (.py)
  • No special requirements

Architecture Bloat Detection

When generating documentation, kc-docs also checks for architecture anti-patterns that inflate class counts and obscure the real domain structure.

Pydantic Model Bloat

Problem: Using Pydantic BaseModel for every nested data structure instead of only at API boundaries.

# ❌ BLOAT: 5 classes for simple nested data
class Coordinate(BaseModel):
    lat: float
    lon: float

class Options(BaseModel):
    radius: float

class Request(BaseModel):
    coord: Coordinate
    options: Options

# ✅ LEAN: 1 class for API boundary, rest is inline
class Request(BaseModel):
    lat: float
    lon: float
    radius: float = 30.0

Detection: kc-docs flags when:

  • Pydantic models > 30% of total classes
  • Pydantic models with < 5 fields (could be NamedTuple)
  • Nested Pydantic models used only internally

Recommendation:

Location Use
API Request/Response ✅ Pydantic
Internal data passing dataclass, NamedTuple, or dict
Simple value groups tuple or NamedTuple

Thin Wrapper Classes

Problem: Classes with < 50 LOC that just delegate to other classes or stdlib.

# ❌ BLOAT: Reinventing stdlib
class AdvancedCache:
    def __init__(self):
        self._cache = {}
    def get(self, key):
        return self._cache.get(key)
    def set(self, key, value):
        self._cache[key] = value

# ✅ LEAN: Use stdlib
from functools import lru_cache

Detection: kc-docs flags classes with:

  • < 50 lines of code
  • < 3 methods
  • Names ending in Manager, Handler, Wrapper, Helper

Layer Tax

Problem: handler → service → repository → model chains for simple operations.

Detection: kc-docs measures import depth and flags when > 4 layers.

Metrics in Analysis Report

When you run /kc-docs analyze, the report now includes:

Architecture Health:
├── Pydantic model ratio: 41/169 (24%) ⚠️ HIGH
├── Thin wrappers detected: 8 classes
├── Average LOC per class: 85 ⚠️ LOW (target: 100-300)
├── Max import depth: 5 ⚠️ DEEP
└── Recommendation: Consolidate Pydantic models, merge thin wrappers

Reference: Lean Architecture

See ~/.claude/snippets/lean-architecture-guard.md for full guidelines.

Golden rule: A class should map to a domain concept (Turbine, Invoice, RoofPolygon), not an architecture concept (Handler, Service, Manager).


Troubleshooting

"No classes found"

  • Check that your project has at least 5 classes
  • Run /kc-docs analyze first to verify structure

"Diagram generation failed"

  • Ensure Mermaid and PlantUML are installed
  • Run: python scripts/check_dependencies.py

"Documentation looks outdated"

  • Use --force flag: /kc-docs generate path --force
  • This regenerates all diagrams from scratch

Tips

  • First time: Run analyze to understand what diagrams you'll get
  • Large projects: Diagrams may be complex. Start with architecture view
  • Keep updated: Re-run generation after major refactoring
  • Version control: Commit source files (.mmd, .puml), gitignore generated SVGs
  • Share: Export to PNG or PDF for sharing with non-technical stakeholders

File References

  • Analysis script: scripts/analyze_project.py
  • Diagram generator: scripts/generate_diagrams.py
  • Templates: templates/
  • Examples: examples/

Next step: Run /kc-docs analyze <your_project_path> to get started!