| name | moai-domain-database |
| description | Database specialist covering PostgreSQL, MongoDB, Redis, and advanced data patterns for modern applications |
| version | 1.0.0 |
| category | domain |
| tags | database, postgresql, mongodb, redis, data-patterns, performance |
| updated | Sun Nov 30 2025 00:00:00 GMT+0000 (Coordinated Universal Time) |
| status | active |
| author | MoAI-ADK Team |
Database Domain Specialist
Quick Reference (30 seconds)
Enterprise Database Expertise - Comprehensive database patterns and implementations covering PostgreSQL, MongoDB, Redis, and advanced data management for scalable modern applications.
Core Capabilities:
- PostgreSQL: Advanced relational patterns, optimization, and scaling
- MongoDB: Document modeling, aggregation, and NoSQL performance tuning
- Redis: In-memory caching, real-time analytics, and distributed systems
- Multi-Database: Hybrid architectures and data integration patterns
- Performance: Query optimization, indexing strategies, and scaling
- Operations: Connection management, migrations, and monitoring
When to Use:
- Designing database schemas and data models
- Implementing caching strategies and performance optimization
- Building scalable data architectures
- Working with multi-database systems
- Optimizing database queries and performance
Implementation Guide (5 minutes)
Quick Start Workflow
Database Stack Initialization:
from moai_domain_database import DatabaseManager
# Initialize multi-database stack
db_manager = DatabaseManager()
# Configure PostgreSQL for relational data
postgresql = db_manager.setup_postgresql(
connection_string="postgresql://...",
connection_pool_size=20,
enable_query_logging=True
)
# Configure MongoDB for document storage
mongodb = db_manager.setup_mongodb(
connection_string="mongodb://...",
database_name="app_data",
enable_sharding=True
)
# Configure Redis for caching and real-time features
redis = db_manager.setup_redis(
connection_string="redis://...",
max_connections=50,
enable_clustering=True
)
# Use unified database interface
user_data = db_manager.get_user_with_profile(user_id)
analytics = db_manager.get_user_analytics(user_id, time_range="30d")
Single Database Operations:
# PostgreSQL schema migration
moai db:migrate --database postgresql --migration-file schema_v2.sql
# MongoDB aggregation pipeline
moai db:aggregate --collection users --pipeline analytics_pipeline.json
# Redis cache warming
moai db:cache:warm --pattern "user:*" --ttl 3600
Core Components
- PostgreSQL (
modules/postgresql.md)
- Advanced schema design and constraints
- Complex query optimization and indexing
- Window functions and CTEs
- Partitioning and materialized views
- Connection pooling and performance tuning
- MongoDB (
modules/mongodb.md)
- Document modeling and schema design
- Aggregation pipelines for analytics
- Indexing strategies and performance
- Sharding and scaling patterns
- Data consistency and validation
- Redis (
modules/redis.md)
- Multi-layer caching strategies
- Real-time analytics and counting
- Distributed locking and coordination
- Pub/sub messaging and streams
- Advanced data structures (HyperLogLog, Geo)
Advanced Patterns (10+ minutes)
Multi-Database Architecture
Polyglot Persistence Pattern:
class DataRouter:
def __init__(self):
self.postgresql = PostgreSQLConnection()
self.mongodb = MongoDBConnection()
self.redis = RedisConnection()
def get_user_profile(self, user_id):
# Get structured user data from PostgreSQL
user = self.postgresql.get_user(user_id)
# Get flexible profile data from MongoDB
profile = self.mongodb.get_user_profile(user_id)
# Get real-time status from Redis
status = self.redis.get_user_status(user_id)
return self.merge_user_data(user, profile, status)
def update_user_data(self, user_id, data):
# Route different data types to appropriate databases
if 'structured_data' in data:
self.postgresql.update_user(user_id, data['structured_data'])
if 'profile_data' in data:
self.mongodb.update_user_profile(user_id, data['profile_data'])
if 'real_time_data' in data:
self.redis.set_user_status(user_id, data['real_time_data'])
# Invalidate cache across databases
self.invalidate_user_cache(user_id)
Data Synchronization:
class DataSyncManager:
def sync_user_data(self, user_id):
# Sync from PostgreSQL to MongoDB for search
pg_user = self.postgresql.get_user(user_id)
search_document = self.create_search_document(pg_user)
self.mongodb.upsert_user_search(user_id, search_document)
# Update cache in Redis
cache_data = self.create_cache_document(pg_user)
self.redis.set_user_cache(user_id, cache_data, ttl=3600)
Performance Optimization
Query Performance Analysis:
# PostgreSQL query optimization
def analyze_query_performance(query):
explain_result = postgresql.execute(f"EXPLAIN (ANALYZE, BUFFERS) {query}")
return QueryAnalyzer(explain_result).get_optimization_suggestions()
# MongoDB aggregation optimization
def optimize_aggregation_pipeline(pipeline):
optimizer = AggregationOptimizer()
return optimizer.optimize_pipeline(pipeline)
# Redis performance monitoring
def monitor_redis_performance():
metrics = redis.info()
return PerformanceAnalyzer(metrics).get_recommendations()
Scaling Strategies:
# Read replicas for PostgreSQL
read_replicas = postgresql.setup_read_replicas([
"postgresql://replica1...",
"postgresql://replica2..."
])
# Sharding for MongoDB
mongodb.setup_sharding(
shard_key="user_id",
num_shards=4
)
# Redis clustering
redis.setup_cluster([
"redis://node1:7000",
"redis://node2:7000",
"redis://node3:7000"
])
Works Well With
Complementary Skills:
moai-domain-backend- API integration and business logicmoai-foundation-core- Database migration and schema managementmoai-workflow-project- Database project setup and configurationmoai-platform-baas- BaaS database integration patterns
Technology Integration:
- ORMs and ODMs (SQLAlchemy, Mongoose, TypeORM)
- Connection pooling (PgBouncer, connection pools)
- Migration tools (Alembic, Flyway)
- Monitoring (pg_stat_statements, MongoDB Atlas)
- Cache invalidation and synchronization
Usage Examples
Database Operations
# PostgreSQL advanced queries
users = postgresql.query(
"SELECT * FROM users WHERE created_at > %s ORDER BY activity_score DESC LIMIT 100",
[datetime.now() - timedelta(days=30)]
)
# MongoDB analytics
analytics = mongodb.aggregate('events', [
{"$match": {"timestamp": {"$gte": start_date}}},
{"$group": {"_id": "$type", "count": {"$sum": 1}}},
{"$sort": {"count": -1}}
])
# Redis caching operations
async def get_user_data(user_id):
cache_key = f"user:{user_id}"
data = await redis.get(cache_key)
if not data:
data = fetch_from_database(user_id)
await redis.setex(cache_key, 3600, json.dumps(data))
return json.loads(data)
Multi-Database Transactions
async def create_user_with_profile(user_data, profile_data):
try:
# Start transaction across databases
async with transaction_manager():
# Create user in PostgreSQL
user_id = await postgresql.insert_user(user_data)
# Create profile in MongoDB
await mongodb.insert_user_profile(user_id, profile_data)
# Set initial cache in Redis
await redis.set_user_cache(user_id, {
"id": user_id,
"status": "active",
"created_at": datetime.now().isoformat()
})
return user_id
except Exception as e:
# Automatic rollback across databases
logger.error(f"User creation failed: {e}")
raise
Technology Stack
Relational Database:
- PostgreSQL 14+ (primary)
- MySQL 8.0+ (alternative)
- Connection pooling (PgBouncer, SQLAlchemy)
NoSQL Database:
- MongoDB 6.0+ (primary)
- Document modeling and validation
- Aggregation framework
- Sharding and replication
In-Memory Database:
- Redis 7.0+ (primary)
- Redis Stack for advanced features
- Clustering and high availability
- Advanced data structures
Supporting Tools:
- Migration tools (Alembic, Flyway)
- Monitoring (Prometheus, Grafana)
- ORMs/ODMs (SQLAlchemy, Mongoose)
- Connection management
Performance Features:
- Query optimization and analysis
- Index management and strategies
- Caching layers and invalidation
- Load balancing and failover
For detailed implementation patterns and database-specific optimizations, see the modules/ directory.