Claude Code Plugins

Community-maintained marketplace

Feedback

Managed vector database for production AI applications. Fully managed, auto-scaling, with hybrid search (dense + sparse), metadata filtering, and namespaces. Low latency (<100ms p95). Use for production RAG, recommendation systems, or semantic search at scale. Best for serverless, managed infrastructure.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pinecone
description Managed vector database for production AI applications. Fully managed, auto-scaling, with hybrid search (dense + sparse), metadata filtering, and namespaces. Low latency (<100ms p95). Use for production RAG, recommendation systems, or semantic search at scale. Best for serverless, managed infrastructure.
version 1.0.0
author Orchestra Research
license MIT
tags RAG, Pinecone, Vector Database, Managed Service, Serverless, Hybrid Search, Production, Auto-Scaling, Low Latency, Recommendations
dependencies pinecone-client

Pinecone - Managed Vector Database

The vector database for production AI applications.

When to use Pinecone

Use when:

  • Need managed, serverless vector database
  • Production RAG applications
  • Auto-scaling required
  • Low latency critical (<100ms)
  • Don't want to manage infrastructure
  • Need hybrid search (dense + sparse vectors)

Metrics:

  • Fully managed SaaS
  • Auto-scales to billions of vectors
  • p95 latency <100ms
  • 99.9% uptime SLA

Use alternatives instead:

  • Chroma: Self-hosted, open-source
  • FAISS: Offline, pure similarity search
  • Weaviate: Self-hosted with more features

Quick start

Installation

pip install pinecone-client

Basic usage

from pinecone import Pinecone, ServerlessSpec

# Initialize
pc = Pinecone(api_key="your-api-key")

# Create index
pc.create_index(
    name="my-index",
    dimension=1536,  # Must match embedding dimension
    metric="cosine",  # or "euclidean", "dotproduct"
    spec=ServerlessSpec(cloud="aws", region="us-east-1")
)

# Connect to index
index = pc.Index("my-index")

# Upsert vectors
index.upsert(vectors=[
    {"id": "vec1", "values": [0.1, 0.2, ...], "metadata": {"category": "A"}},
    {"id": "vec2", "values": [0.3, 0.4, ...], "metadata": {"category": "B"}}
])

# Query
results = index.query(
    vector=[0.1, 0.2, ...],
    top_k=5,
    include_metadata=True
)

print(results["matches"])

Core operations

Create index

# Serverless (recommended)
pc.create_index(
    name="my-index",
    dimension=1536,
    metric="cosine",
    spec=ServerlessSpec(
        cloud="aws",         # or "gcp", "azure"
        region="us-east-1"
    )
)

# Pod-based (for consistent performance)
from pinecone import PodSpec

pc.create_index(
    name="my-index",
    dimension=1536,
    metric="cosine",
    spec=PodSpec(
        environment="us-east1-gcp",
        pod_type="p1.x1"
    )
)

Upsert vectors

# Single upsert
index.upsert(vectors=[
    {
        "id": "doc1",
        "values": [0.1, 0.2, ...],  # 1536 dimensions
        "metadata": {
            "text": "Document content",
            "category": "tutorial",
            "timestamp": "2025-01-01"
        }
    }
])

# Batch upsert (recommended)
vectors = [
    {"id": f"vec{i}", "values": embedding, "metadata": metadata}
    for i, (embedding, metadata) in enumerate(zip(embeddings, metadatas))
]

index.upsert(vectors=vectors, batch_size=100)

Query vectors

# Basic query
results = index.query(
    vector=[0.1, 0.2, ...],
    top_k=10,
    include_metadata=True,
    include_values=False
)

# With metadata filtering
results = index.query(
    vector=[0.1, 0.2, ...],
    top_k=5,
    filter={"category": {"$eq": "tutorial"}}
)

# Namespace query
results = index.query(
    vector=[0.1, 0.2, ...],
    top_k=5,
    namespace="production"
)

# Access results
for match in results["matches"]:
    print(f"ID: {match['id']}")
    print(f"Score: {match['score']}")
    print(f"Metadata: {match['metadata']}")

Metadata filtering

# Exact match
filter = {"category": "tutorial"}

# Comparison
filter = {"price": {"$gte": 100}}  # $gt, $gte, $lt, $lte, $ne

# Logical operators
filter = {
    "$and": [
        {"category": "tutorial"},
        {"difficulty": {"$lte": 3}}
    ]
}  # Also: $or

# In operator
filter = {"tags": {"$in": ["python", "ml"]}}

Namespaces

# Partition data by namespace
index.upsert(
    vectors=[{"id": "vec1", "values": [...]}],
    namespace="user-123"
)

# Query specific namespace
results = index.query(
    vector=[...],
    namespace="user-123",
    top_k=5
)

# List namespaces
stats = index.describe_index_stats()
print(stats['namespaces'])

Hybrid search (dense + sparse)

# Upsert with sparse vectors
index.upsert(vectors=[
    {
        "id": "doc1",
        "values": [0.1, 0.2, ...],  # Dense vector
        "sparse_values": {
            "indices": [10, 45, 123],  # Token IDs
            "values": [0.5, 0.3, 0.8]   # TF-IDF scores
        },
        "metadata": {"text": "..."}
    }
])

# Hybrid query
results = index.query(
    vector=[0.1, 0.2, ...],
    sparse_vector={
        "indices": [10, 45],
        "values": [0.5, 0.3]
    },
    top_k=5,
    alpha=0.5  # 0=sparse, 1=dense, 0.5=hybrid
)

LangChain integration

from langchain_pinecone import PineconeVectorStore
from langchain_openai import OpenAIEmbeddings

# Create vector store
vectorstore = PineconeVectorStore.from_documents(
    documents=docs,
    embedding=OpenAIEmbeddings(),
    index_name="my-index"
)

# Query
results = vectorstore.similarity_search("query", k=5)

# With metadata filter
results = vectorstore.similarity_search(
    "query",
    k=5,
    filter={"category": "tutorial"}
)

# As retriever
retriever = vectorstore.as_retriever(search_kwargs={"k": 10})

LlamaIndex integration

from llama_index.vector_stores.pinecone import PineconeVectorStore

# Connect to Pinecone
pc = Pinecone(api_key="your-key")
pinecone_index = pc.Index("my-index")

# Create vector store
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)

# Use in LlamaIndex
from llama_index.core import StorageContext, VectorStoreIndex

storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)

Index management

# List indices
indexes = pc.list_indexes()

# Describe index
index_info = pc.describe_index("my-index")
print(index_info)

# Get index stats
stats = index.describe_index_stats()
print(f"Total vectors: {stats['total_vector_count']}")
print(f"Namespaces: {stats['namespaces']}")

# Delete index
pc.delete_index("my-index")

Delete vectors

# Delete by ID
index.delete(ids=["vec1", "vec2"])

# Delete by filter
index.delete(filter={"category": "old"})

# Delete all in namespace
index.delete(delete_all=True, namespace="test")

# Delete entire index
index.delete(delete_all=True)

Best practices

  1. Use serverless - Auto-scaling, cost-effective
  2. Batch upserts - More efficient (100-200 per batch)
  3. Add metadata - Enable filtering
  4. Use namespaces - Isolate data by user/tenant
  5. Monitor usage - Check Pinecone dashboard
  6. Optimize filters - Index frequently filtered fields
  7. Test with free tier - 1 index, 100K vectors free
  8. Use hybrid search - Better quality
  9. Set appropriate dimensions - Match embedding model
  10. Regular backups - Export important data

Performance

Operation Latency Notes
Upsert ~50-100ms Per batch
Query (p50) ~50ms Depends on index size
Query (p95) ~100ms SLA target
Metadata filter ~+10-20ms Additional overhead

Pricing (as of 2025)

Serverless:

  • $0.096 per million read units
  • $0.06 per million write units
  • $0.06 per GB storage/month

Free tier:

  • 1 serverless index
  • 100K vectors (1536 dimensions)
  • Great for prototyping

Resources