Claude Code Plugins

Community-maintained marketplace

Feedback

dspy-finetune-bootstrap

@OmidZamani/dspy-skills
5
0

Fine-tune LLM weights using DSPy's BootstrapFinetune optimizer

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name dspy-finetune-bootstrap
description Fine-tune LLM weights using DSPy's BootstrapFinetune optimizer
allowed-tools Read, Write, Glob, Grep

DSPy BootstrapFinetune Optimizer

Goal

Distill a DSPy program into fine-tuned model weights for efficient production deployment.

When to Use

  • You have a working DSPy program with a large model
  • Need to reduce inference costs
  • Want faster responses (smaller model)
  • Deploying to resource-constrained environments

Inputs

Input Type Description
program dspy.Module Teacher program to distill
trainset list[dspy.Example] Training examples
metric callable Validation metric (optional)
train_kwargs dict Training hyperparameters

Outputs

Output Type Description
finetuned_program dspy.Module Program with fine-tuned weights
model_path str Path to saved model

Workflow

Phase 1: Prepare Teacher Program

import dspy

# Configure with strong teacher model
dspy.configure(lm=dspy.LM("openai/gpt-4o"))

class TeacherQA(dspy.Module):
    def __init__(self):
        self.cot = dspy.ChainOfThought("question -> answer")
    
    def forward(self, question):
        return self.cot(question=question)

Phase 2: Generate Training Traces

BootstrapFinetune automatically generates traces from the teacher:

optimizer = dspy.BootstrapFinetune(
    metric=lambda gold, pred, trace=None: gold.answer.lower() in pred.answer.lower()
)

Phase 3: Fine-tune Student Model

finetuned = optimizer.compile(
    TeacherQA(),
    trainset=trainset,
    train_kwargs={
        'learning_rate': 5e-5,
        'num_train_epochs': 3,
        'per_device_train_batch_size': 4,
        'warmup_ratio': 0.1
    }
)

Phase 4: Deploy

# Save the fine-tuned model
finetuned.save("finetuned_qa_model")

# Load and use
loaded = TeacherQA()
loaded.load("finetuned_qa_model")
result = loaded(question="What is machine learning?")

Production Example

import dspy
from dspy.evaluate import Evaluate
import logging
import os

logger = logging.getLogger(__name__)

class ClassificationSignature(dspy.Signature):
    """Classify text into categories."""
    text: str = dspy.InputField()
    label: str = dspy.OutputField(desc="Category: positive, negative, neutral")

class TextClassifier(dspy.Module):
    def __init__(self):
        self.classify = dspy.Predict(ClassificationSignature)
    
    def forward(self, text):
        return self.classify(text=text)

def classification_metric(gold, pred, trace=None):
    """Exact label match."""
    gold_label = gold.label.lower().strip()
    pred_label = pred.label.lower().strip() if pred.label else ""
    return gold_label == pred_label

def finetune_classifier(trainset, devset, output_dir="./finetuned_model"):
    """Full fine-tuning pipeline."""
    
    # Configure teacher (strong model)
    dspy.configure(lm=dspy.LM("openai/gpt-4o"))
    
    teacher = TextClassifier()
    
    # Evaluate teacher
    evaluator = Evaluate(devset=devset, metric=classification_metric, num_threads=8)
    teacher_score = evaluator(teacher)
    logger.info(f"Teacher score: {teacher_score:.2%}")
    
    # Fine-tune
    optimizer = dspy.BootstrapFinetune(
        metric=classification_metric
    )
    
    finetuned = optimizer.compile(
        teacher,
        trainset=trainset,
        train_kwargs={
            'learning_rate': 2e-5,
            'num_train_epochs': 3,
            'per_device_train_batch_size': 8,
            'gradient_accumulation_steps': 2,
            'warmup_ratio': 0.1,
            'weight_decay': 0.01,
            'logging_steps': 10,
            'save_strategy': 'epoch',
            'output_dir': output_dir
        }
    )
    
    # Evaluate fine-tuned model
    student_score = evaluator(finetuned)
    logger.info(f"Student score: {student_score:.2%}")
    
    # Save
    finetuned.save(os.path.join(output_dir, "final_model"))
    
    return {
        "teacher_score": teacher_score,
        "student_score": student_score,
        "model_path": output_dir
    }

# For RAG fine-tuning
class RAGClassifier(dspy.Module):
    """RAG pipeline that can be fine-tuned."""
    
    def __init__(self, num_passages=3):
        self.retrieve = dspy.Retrieve(k=num_passages)
        self.classify = dspy.ChainOfThought("context, text -> label")
    
    def forward(self, text):
        context = self.retrieve(text).passages
        return self.classify(context=context, text=text)

def finetune_rag_classifier(trainset, devset):
    """Fine-tune a RAG-based classifier."""
    
    # Configure retriever and LM
    colbert = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
    dspy.configure(
        lm=dspy.LM("openai/gpt-4o"),
        rm=colbert
    )
    
    rag = RAGClassifier()
    
    optimizer = dspy.BootstrapFinetune(
        metric=classification_metric
    )
    
    finetuned = optimizer.compile(
        rag,
        trainset=trainset,
        train_kwargs={
            'learning_rate': 1e-5,
            'num_train_epochs': 5
        }
    )
    
    return finetuned

Training Arguments Reference

Argument Description Typical Value
learning_rate Learning rate 1e-5 to 5e-5
num_train_epochs Training epochs 3-5
per_device_train_batch_size Batch size 4-16
gradient_accumulation_steps Gradient accumulation 2-8
warmup_ratio Warmup proportion 0.1
weight_decay L2 regularization 0.01
max_grad_norm Gradient clipping 1.0

Best Practices

  1. Strong teacher - Use GPT-4 or Claude as teacher
  2. Quality data - Teacher traces are only as good as training examples
  3. Validate improvement - Compare student to teacher on held-out set
  4. Start with more epochs - Fine-tuning often needs 3-5 epochs
  5. Monitor overfitting - Track validation loss during training

Limitations

  • Requires access to model weights (not API-only models)
  • Training requires GPU resources
  • Student may not match teacher quality on all inputs
  • Fine-tuning takes hours/days depending on data size
  • Model size reduction may cause capability loss