DSPy MIPROv2 Optimizer
Goal
Jointly optimize instructions and few-shot demonstrations using Bayesian Optimization for maximum performance.
When to Use
- You have 200+ training examples
- You can afford longer optimization runs (40+ trials)
- You need state-of-the-art performance
- Both instructions and demos need tuning
Inputs
| Input |
Type |
Description |
program |
dspy.Module |
Program to optimize |
trainset |
list[dspy.Example] |
200+ training examples |
metric |
callable |
Evaluation function |
auto |
str |
"light", "medium", or "heavy" |
num_trials |
int |
Optimization trials (40+) |
Outputs
| Output |
Type |
Description |
compiled_program |
dspy.Module |
Fully optimized program |
Workflow
Three-Stage Process
- Bootstrap - Generate candidate demonstrations
- Propose - Create grounded instruction candidates
- Search - Bayesian optimization over combinations
Phase 1: Setup
import dspy
dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"))
Phase 2: Define Program
class RAGAgent(dspy.Module):
def __init__(self):
self.retrieve = dspy.Retrieve(k=3)
self.generate = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = self.retrieve(question).passages
return self.generate(context=context, question=question)
Phase 3: Optimize
optimizer = dspy.MIPROv2(
metric=dspy.evaluate.answer_exact_match,
auto="medium", # Balanced optimization
num_threads=24
)
compiled = optimizer.compile(RAGAgent(), trainset=trainset)
Auto Presets
| Preset |
Trials |
Use Case |
"light" |
~10 |
Quick iteration |
"medium" |
~40 |
Production optimization |
"heavy" |
~100+ |
Maximum performance |
Production Example
import dspy
from dspy.evaluate import Evaluate
import json
import logging
logger = logging.getLogger(__name__)
class ReActAgent(dspy.Module):
def __init__(self, tools):
self.react = dspy.ReAct("question -> answer", tools=tools)
def forward(self, question):
return self.react(question=question)
def search_tool(query: str) -> list[str]:
"""Search knowledge base."""
results = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')(query, k=3)
return [r['text'] for r in results]
def optimize_agent(trainset, devset):
"""Full MIPROv2 optimization pipeline."""
agent = ReActAgent(tools=[search_tool])
# Baseline evaluation
evaluator = Evaluate(
devset=devset,
metric=dspy.evaluate.answer_exact_match,
num_threads=8
)
baseline = evaluator(agent)
logger.info(f"Baseline: {baseline:.2%}")
# MIPROv2 optimization
optimizer = dspy.MIPROv2(
metric=dspy.evaluate.answer_exact_match,
auto="medium",
num_threads=24,
# Custom settings
num_candidates=15,
max_bootstrapped_demos=4,
max_labeled_demos=8
)
compiled = optimizer.compile(agent, trainset=trainset)
optimized = evaluator(compiled)
logger.info(f"Optimized: {optimized:.2%}")
# Save with metadata
compiled.save("agent_mipro.json")
metadata = {
"baseline_score": baseline,
"optimized_score": optimized,
"improvement": optimized - baseline,
"num_train": len(trainset),
"num_dev": len(devset)
}
with open("optimization_metadata.json", "w") as f:
json.dump(metadata, f, indent=2)
return compiled, metadata
Instruction-Only Mode
# Disable demos for pure instruction optimization
optimizer = dspy.MIPROv2(
metric=metric,
auto="medium",
max_bootstrapped_demos=0,
max_labeled_demos=0
)
Best Practices
- Data quantity matters - 200+ examples for best results
- Use auto presets - Start with "medium", adjust based on results
- Parallel threads - Use
num_threads=24 or higher if available
- Monitor costs - Track API usage during optimization
- Save intermediate - Bayesian search saves progress
Limitations
- High computational cost (many LLM calls)
- Requires substantial training data
- Optimization time: hours for "heavy" preset
- Memory intensive for large candidate sets