DSPy Signature Designer
Goal
Design clear, type-safe signatures that define what your DSPy modules should do.
When to Use
- Defining new DSPy modules
- Need structured/validated outputs
- Complex input/output relationships
- Multi-field responses
Inputs
| Input |
Type |
Description |
task_description |
str |
What the module should do |
input_fields |
list |
Required inputs |
output_fields |
list |
Expected outputs |
type_constraints |
dict |
Type hints for fields |
Outputs
| Output |
Type |
Description |
signature |
dspy.Signature |
Type-safe signature class |
Workflow
Inline Signatures (Simple)
import dspy
# Basic
qa = dspy.Predict("question -> answer")
# With types
classify = dspy.Predict("sentence -> sentiment: bool")
# Multiple fields
rag = dspy.ChainOfThought("context: list[str], question: str -> answer: str")
Class-based Signatures (Complex)
from typing import Literal, Optional
import dspy
class EmotionClassifier(dspy.Signature):
"""Classify the emotion expressed in the text."""
text: str = dspy.InputField(desc="The text to analyze")
emotion: Literal['joy', 'sadness', 'anger', 'fear', 'surprise'] = dspy.OutputField()
confidence: float = dspy.OutputField(desc="Confidence score 0-1")
Type Hints Reference
from typing import Literal, Optional, List
from pydantic import BaseModel
# Basic types
field: str = dspy.InputField()
field: int = dspy.OutputField()
field: float = dspy.OutputField()
field: bool = dspy.OutputField()
# Collections
field: list[str] = dspy.InputField()
field: List[int] = dspy.OutputField()
# Optional
field: Optional[str] = dspy.OutputField()
# Constrained
field: Literal['a', 'b', 'c'] = dspy.OutputField()
# Pydantic models
class Person(BaseModel):
name: str
age: int
field: Person = dspy.OutputField()
Production Examples
Summarization
class Summarize(dspy.Signature):
"""Summarize the document into key points."""
document: str = dspy.InputField(desc="Full document text")
max_points: int = dspy.InputField(desc="Maximum bullet points", default=5)
summary: list[str] = dspy.OutputField(desc="Key points as bullet list")
word_count: int = dspy.OutputField(desc="Total words in summary")
Entity Extraction
from pydantic import BaseModel
from typing import List
class Entity(BaseModel):
text: str
type: str
start: int
end: int
class ExtractEntities(dspy.Signature):
"""Extract named entities from text."""
text: str = dspy.InputField()
entity_types: list[str] = dspy.InputField(
desc="Types to extract: PERSON, ORG, LOC, DATE",
default=["PERSON", "ORG", "LOC"]
)
entities: List[Entity] = dspy.OutputField()
Multi-Label Classification
class MultiLabelClassify(dspy.Signature):
"""Classify text into multiple categories."""
text: str = dspy.InputField()
categories: list[str] = dspy.OutputField(
desc="Applicable categories from: tech, business, sports, entertainment"
)
primary_category: str = dspy.OutputField(desc="Most relevant category")
reasoning: str = dspy.OutputField(desc="Explanation for classification")
RAG with Confidence
class GroundedAnswer(dspy.Signature):
"""Answer questions using retrieved context with confidence."""
context: list[str] = dspy.InputField(desc="Retrieved passages")
question: str = dspy.InputField()
answer: str = dspy.OutputField(desc="Factual answer from context")
confidence: Literal['high', 'medium', 'low'] = dspy.OutputField(
desc="Confidence based on context support"
)
source_passage: int = dspy.OutputField(
desc="Index of most relevant passage (0-based)"
)
Complete Module with Signature
import dspy
from typing import Literal, Optional
import logging
logger = logging.getLogger(__name__)
class AnalyzeSentiment(dspy.Signature):
"""Analyze sentiment with detailed breakdown."""
text: str = dspy.InputField(desc="Text to analyze")
sentiment: Literal['positive', 'negative', 'neutral', 'mixed'] = dspy.OutputField()
score: float = dspy.OutputField(desc="Sentiment score from -1 to 1")
aspects: list[str] = dspy.OutputField(desc="Key aspects mentioned")
reasoning: str = dspy.OutputField(desc="Explanation of sentiment")
class SentimentAnalyzer(dspy.Module):
def __init__(self):
self.analyze = dspy.ChainOfThought(AnalyzeSentiment)
def forward(self, text: str):
try:
result = self.analyze(text=text)
# Validate score range
if hasattr(result, 'score'):
result.score = max(-1, min(1, float(result.score)))
return result
except Exception as e:
logger.error(f"Analysis failed: {e}")
return dspy.Prediction(
sentiment='neutral',
score=0.0,
aspects=[],
reasoning="Analysis failed"
)
# Usage
analyzer = SentimentAnalyzer()
result = analyzer(text="The product quality is great but shipping was slow.")
print(f"Sentiment: {result.sentiment} ({result.score})")
print(f"Aspects: {result.aspects}")
Best Practices
- Descriptive docstrings - The class docstring becomes the task instruction
- Field descriptions - Guide the model with
desc parameter
- Constrain outputs - Use
Literal for categorical outputs
- Default values - Provide sensible defaults for optional inputs
- Validate types - Pydantic models ensure structured output
Limitations
- Complex nested types may require Pydantic
- Some LLMs struggle with strict type constraints
- JSONAdapter works better for structured outputs
- Field descriptions add to prompt length