| name | microdf |
| description | Weighted pandas DataFrames for survey microdata analysis - inequality, poverty, and distributional calculations |
MicroDF
MicroDF provides weighted pandas DataFrames and Series for analyzing survey microdata, with built-in support for inequality and poverty calculations.
For Users 👥
What is MicroDF?
When you see poverty rates, Gini coefficients, or distributional charts in PolicyEngine, those are calculated using MicroDF.
MicroDF powers:
- Poverty rate calculations (SPM)
- Inequality metrics (Gini coefficient)
- Income distribution analysis
- Weighted statistics from survey data
Understanding the Metrics
Gini coefficient:
- Calculated using MicroDF from weighted income data
- Ranges from 0 (perfect equality) to 1 (perfect inequality)
- US typically around 0.48
Poverty rates:
- Calculated using MicroDF with weighted household data
- Compares income to poverty thresholds
- Accounts for household composition
Percentiles:
- MicroDF calculates weighted percentiles
- Shows income distribution (10th, 50th, 90th percentile)
For Analysts 📊
Installation
pip install microdf-python
Quick Start
import microdf as mdf
import pandas as pd
# Create sample data
df = pd.DataFrame({
'income': [10000, 20000, 30000, 40000, 50000],
'weights': [1, 2, 3, 2, 1]
})
# Create MicroDataFrame
mdf_df = mdf.MicroDataFrame(df, weights='weights')
# All operations are weight-aware
print(f"Weighted mean: ${mdf_df.income.mean():,.0f}")
print(f"Gini coefficient: {mdf_df.income.gini():.3f}")
Common Operations
Weighted statistics:
mdf_df.income.mean() # Weighted mean
mdf_df.income.median() # Weighted median
mdf_df.income.sum() # Weighted sum
mdf_df.income.std() # Weighted standard deviation
Inequality metrics:
mdf_df.income.gini() # Gini coefficient
mdf_df.income.top_x_pct_share(10) # Top 10% share
mdf_df.income.top_x_pct_share(1) # Top 1% share
Poverty analysis:
# Poverty rate (income < threshold)
poverty_rate = mdf_df.poverty_rate(
income_measure='income',
threshold=poverty_line
)
# Poverty gap (how far below threshold)
poverty_gap = mdf_df.poverty_gap(
income_measure='income',
threshold=poverty_line
)
# Deep poverty (income < 50% of threshold)
deep_poverty_rate = mdf_df.deep_poverty_rate(
income_measure='income',
threshold=poverty_line,
deep_poverty_line=0.5
)
Quantiles:
# Deciles
mdf_df.income.decile_values()
# Quintiles
mdf_df.income.quintile_values()
# Custom quantiles
mdf_df.income.quantile(0.25) # 25th percentile
MicroSeries
# Extract a Series with weights
income_series = mdf_df.income # This is a MicroSeries
# MicroSeries operations
income_series.mean()
income_series.gini()
income_series.percentile(50)
Working with PolicyEngine Results
import microdf as mdf
from policyengine_us import Simulation
# Run simulation with axes (multiple households)
situation_with_axes = {...} # See policyengine-us-skill
sim = Simulation(situation=situation_with_axes)
# Get results as arrays
incomes = sim.calculate("household_net_income", 2024)
weights = sim.calculate("household_weight", 2024)
# Create MicroDataFrame
df = pd.DataFrame({'income': incomes, 'weight': weights})
mdf_df = mdf.MicroDataFrame(df, weights='weight')
# Calculate metrics
gini = mdf_df.income.gini()
poverty_rate = mdf_df.poverty_rate('income', threshold=15000)
print(f"Gini: {gini:.3f}")
print(f"Poverty rate: {poverty_rate:.1%}")
For Contributors 💻
Repository
Location: PolicyEngine/microdf
Clone:
git clone https://github.com/PolicyEngine/microdf
cd microdf
Current Implementation
To see current API:
# Main classes
cat microdf/microframe.py # MicroDataFrame
cat microdf/microseries.py # MicroSeries
# Key modules
cat microdf/generic.py # Generic weighted operations
cat microdf/inequality.py # Gini, top shares
cat microdf/poverty.py # Poverty metrics
To see all methods:
# MicroDataFrame methods
grep "def " microdf/microframe.py
# MicroSeries methods
grep "def " microdf/microseries.py
Testing
To see test patterns:
ls tests/
cat tests/test_microframe.py
Run tests:
make test
# Or
pytest tests/ -v
Contributing
Before contributing:
- Check if method already exists
- Ensure it's weighted correctly
- Add tests
- Follow policyengine-standards-skill
Common contributions:
- New inequality metrics
- New poverty measures
- Performance optimizations
- Bug fixes
Advanced Patterns
Custom Aggregations
# Define custom weighted aggregation
def weighted_operation(series, weights):
return (series * weights).sum() / weights.sum()
# Apply to MicroSeries
result = weighted_operation(mdf_df.income, mdf_df.weights)
Groupby Operations
# Group by with weights
grouped = mdf_df.groupby('state')
state_means = grouped.income.mean() # Weighted means by state
Inequality Decomposition
To see decomposition methods:
grep -A 20 "def.*decomp" microdf/
Integration Examples
Example 1: PolicyEngine Blog Post Analysis
# Pattern from PolicyEngine blog posts
import microdf as mdf
# Get simulation results
baseline_income = baseline_sim.calculate("household_net_income", 2024)
reform_income = reform_sim.calculate("household_net_income", 2024)
weights = baseline_sim.calculate("household_weight", 2024)
# Create MicroDataFrame
df = pd.DataFrame({
'baseline_income': baseline_income,
'reform_income': reform_income,
'weight': weights
})
mdf_df = mdf.MicroDataFrame(df, weights='weight')
# Calculate impacts
baseline_gini = mdf_df.baseline_income.gini()
reform_gini = mdf_df.reform_income.gini()
print(f"Gini change: {reform_gini - baseline_gini:+.4f}")
Example 2: Poverty Analysis
# Calculate poverty under baseline and reform
from policyengine_us import Simulation
baseline_sim = Simulation(situation=situation)
reform_sim = Simulation(situation=situation, reform=reform)
# Get incomes
baseline_income = baseline_sim.calculate("spm_unit_net_income", 2024)
reform_income = reform_sim.calculate("spm_unit_net_income", 2024)
spm_threshold = baseline_sim.calculate("spm_unit_poverty_threshold", 2024)
weights = baseline_sim.calculate("spm_unit_weight", 2024)
# Calculate poverty rates
df_baseline = mdf.MicroDataFrame(
pd.DataFrame({'income': baseline_income, 'threshold': spm_threshold, 'weight': weights}),
weights='weight'
)
poverty_baseline = (df_baseline.income < df_baseline.threshold).mean() # Weighted
# Similar for reform
print(f"Poverty reduction: {(poverty_baseline - poverty_reform):.1%}")
Package Status
Maturity: Stable, production-ready API stability: Stable (rarely breaking changes) Performance: Optimized for large datasets
To see version:
pip show microdf-python
To see changelog:
cat CHANGELOG.md # In microdf repo
Related Skills
- policyengine-us-skill - Generating data for microdf analysis
- policyengine-analysis-skill - Using microdf in policy analysis
- policyengine-us-data-skill - Data sources for microdf
Resources
Repository: https://github.com/PolicyEngine/microdf PyPI: https://pypi.org/project/microdf-python/ Issues: https://github.com/PolicyEngine/microdf/issues