| name | enterprise-python |
| description | Enterprise-ready Python development incorporating Kaizen (continuous improvement) and Monozukuri (meticulous craftsmanship) principles. Use this skill when building Python applications, APIs, CLI tools, data pipelines, automation scripts, or when the user requests clean, efficient, fast, simple, elegant, enterprise-grade, bulletproof, or production-ready Python code. This skill enforces modern Python 3.12+ best practices, type safety, testing patterns, security, and performance optimization. |
Enterprise Python Development
Build bulletproof, enterprise-ready Python applications that embody Kaizen (continuous improvement) and Monozukuri (meticulous craftsmanship) principles. This skill guides development of clean, efficient, performant Python code that is simple, elegant, and built to last.
Core Philosophy
Kaizen (改善): Continuous improvement through incremental refinement Monozukuri (ものづくり): The art of making things with meticulous attention to quality and craftsmanship
These principles translate to Python code that is:
- Clean: Self-documenting, readable, and maintainable
- Efficient: Optimized algorithms and minimal resource overhead
- Fast: Performance-first architecture with profiled bottlenecks
- Simple: Complexity only where justified
- Elegant: Beautiful solutions that feel inevitable
Python Development Workflow
1. Understand Requirements Deeply
Before writing code:
- Clarify functionality goals and expected inputs/outputs
- Identify edge cases, error scenarios, and failure modes
- Understand performance requirements and constraints
- Consider data volumes and scalability needs
- Plan for testing, logging, and observability
2. Design Before Implementation
Plan the architecture:
- Choose appropriate patterns (functional, OOP, or hybrid)
- Design module hierarchy and data flow
- Plan for dependency injection and testability
- Consider async requirements (asyncio vs threading vs multiprocessing)
- Plan type safety with strict typing
3. Write Code with Craftsmanship
Simplicity First
- Prefer standard library over external dependencies
- Use composition over inheritance
- Avoid premature abstraction
- Keep functions focused and composable
- YAGNI (You Aren't Gonna Need It)
Clean Code Standards
- Meaningful, descriptive names (functions, classes, variables)
- Functions should do one thing well
- Keep functions under 50 lines, classes under 300 lines
- Extract complex logic into helper functions
- Use early returns to reduce nesting
- Comments explain WHY, not WHAT
Type Hints Best Practices
- Use strict typing (
# type: ignoreonly when truly necessary) - Leverage
typingmodule:Optional,Union,TypeVar,Generic - Use
Protocolfor structural subtyping - Define
TypedDictfor dictionary shapes - Use Pydantic or dataclasses for data validation
Error Handling
- Use specific exception types, not bare
except: - Create custom exceptions for domain errors
- Provide actionable error messages with context
- Log errors with proper severity and context
- Handle edge cases gracefully
- Fail fast with clear diagnostics
Security Mindset
- Sanitize user inputs (prevent injection attacks)
- Use parameterized queries for databases
- Validate all external data with Pydantic
- Use environment variables for secrets (never hardcode)
- Implement proper authentication/authorization
- Audit dependencies for vulnerabilities
4. Optimize for Performance
Algorithm Optimization
- Choose appropriate data structures (dict > list for lookups)
- Use generators for memory efficiency
- Profile before optimizing (
cProfile,line_profiler) - Use
functools.lru_cachefor expensive computations - Consider
__slots__for memory-heavy classes
Async and Concurrency
- Use
asynciofor I/O-bound operations - Use
multiprocessingfor CPU-bound operations - Use
concurrent.futuresfor simple parallelism - Avoid blocking calls in async code
- Use connection pooling for databases/HTTP
Import Optimization
- Lazy import heavy modules when appropriate
- Avoid circular imports through proper structure
- Use
__all__to control public API
5. Ensure Robustness
Comprehensive Testing
- Unit tests for functions/methods (pytest)
- Integration tests for module interactions
- Property-based tests for edge cases (hypothesis)
- Fixtures for test data management
- Mock external dependencies
- Aim for >80% coverage on critical paths
Logging and Observability
- Use
loggingmodule with proper levels - Structured logging (JSON) for production
- Add correlation IDs for request tracing
- Instrument with metrics (timing, counts)
- Set up alerts for errors and anomalies
Documentation
- Docstrings for public functions/classes (Google style)
- Type hints serve as inline documentation
- README with setup, usage, and examples
- Architecture Decision Records for significant choices
6. Refine Through Kaizen
Continuously improve:
- Review and refactor regularly
- Eliminate duplicate code (DRY)
- Improve function/class design
- Update dependencies regularly
- Address technical debt incrementally
- Monitor performance metrics
Code Quality Standards
Project Structure
project-name/
├── src/
│ └── project_name/
│ ├── __init__.py
│ ├── main.py # Entry point
│ ├── config.py # Configuration
│ ├── models/ # Data models
│ │ ├── __init__.py
│ │ └── user.py
│ ├── services/ # Business logic
│ │ ├── __init__.py
│ │ └── user_service.py
│ ├── repositories/ # Data access
│ │ ├── __init__.py
│ │ └── user_repo.py
│ ├── api/ # API layer
│ │ ├── __init__.py
│ │ └── routes.py
│ └── utils/ # Helpers
│ ├── __init__.py
│ └── validators.py
├── tests/
│ ├── __init__.py
│ ├── conftest.py # Pytest fixtures
│ ├── unit/
│ └── integration/
├── pyproject.toml # Project config (PEP 518)
├── README.md
└── .env.example
Naming Conventions
Modules/Packages: snake_case (user_service.py, data_processing)
Classes: PascalCase (UserService, DataProcessor, HTTPClient)
Functions/Methods: snake_case (fetch_user, calculate_total, process_data)
Constants: UPPER_SNAKE_CASE (API_URL, MAX_RETRIES, DEFAULT_TIMEOUT)
Private: Leading underscore (_internal_method, _helper_function)
Type Variables: Single uppercase or PascalCase (T, KeyType, ValueType)
Code Patterns
# GOOD: Type hints and dataclasses
from dataclasses import dataclass
from typing import Optional
@dataclass(frozen=True, slots=True)
class User:
id: str
email: str
name: str
is_active: bool = True
# GOOD: Pydantic for validation
from pydantic import BaseModel, EmailStr, Field
class CreateUserRequest(BaseModel):
email: EmailStr
name: str = Field(min_length=1, max_length=100)
age: int = Field(ge=0, le=150)
# GOOD: Context managers for resources
from contextlib import contextmanager
from typing import Generator
@contextmanager
def database_transaction(db: Database) -> Generator[Session, None, None]:
session = db.create_session()
try:
yield session
session.commit()
except Exception:
session.rollback()
raise
finally:
session.close()
# GOOD: Async with proper error handling
async def fetch_user(user_id: str) -> User | None:
try:
async with httpx.AsyncClient() as client:
response = await client.get(f"{API_URL}/users/{user_id}")
response.raise_for_status()
return User(**response.json())
except httpx.HTTPStatusError as e:
if e.response.status_code == 404:
return None
raise UserFetchError(f"Failed to fetch user: {e}") from e
# GOOD: Dependency injection
class UserService:
def __init__(self, repo: UserRepository, cache: Cache) -> None:
self._repo = repo
self._cache = cache
async def get_user(self, user_id: str) -> User | None:
if cached := await self._cache.get(f"user:{user_id}"):
return User(**cached)
user = await self._repo.find_by_id(user_id)
if user:
await self._cache.set(f"user:{user_id}", user.model_dump())
return user
Advanced Patterns
For complex scenarios, consult:
- references/async-patterns.md: Asyncio patterns and concurrency
- references/testing-patterns.md: Testing strategies and fixtures
- references/api-patterns.md: FastAPI/Flask best practices
- references/data-patterns.md: Data processing and pipelines
Modern Python Best Practices
Type Hints (Python 3.12+)
# Use built-in generics (no typing import needed)
def process_items(items: list[str]) -> dict[str, int]:
return {item: len(item) for item in items}
# Use | for unions
def fetch_data(id: str) -> User | None:
...
# Use TypedDict for structured dicts
from typing import TypedDict
class Config(TypedDict):
host: str
port: int
debug: bool
Structural Pattern Matching
def handle_response(response: dict) -> str:
match response:
case {"status": "success", "data": data}:
return f"Success: {data}"
case {"status": "error", "message": msg}:
return f"Error: {msg}"
case {"status": status}:
return f"Unknown status: {status}"
case _:
return "Invalid response"
Modern Configuration
from pydantic_settings import BaseSettings
class Settings(BaseSettings):
database_url: str
api_key: str
debug: bool = False
max_connections: int = 10
class Config:
env_file = ".env"
settings = Settings()
Review Checklist
Before finalizing code:
- Type hints on all public functions/methods
- No
# type: ignorewithout justification - Custom exceptions for domain errors
- Proper logging (not print statements)
- Input validation on all external data
- Unit tests for critical functions
- Docstrings on public API
- No hardcoded secrets or credentials
- Resources properly closed (context managers)
- Async code doesn't block event loop
- Dependencies pinned in pyproject.toml
- No bare
except:clauses - Error messages are actionable
- Performance-critical code profiled
When to Use This Skill
Apply this skill whenever:
- Building Python applications or libraries
- Creating APIs (FastAPI, Flask, Django)
- Writing CLI tools (Click, Typer)
- Building data pipelines
- Writing automation scripts
- Implementing microservices
- User requests enterprise-grade Python code
- User mentions Python, scripting, or backend development
This skill transforms good Python code into exceptional Python applications—fast, secure, maintainable, and delightful to work with.