| name | hammer-benchmark-report |
| description | Generates professional performance analysis reports from SDL3 HammerEngine benchmark results including statistical analysis, comparison tables, visualizations, and recommendations. Use when preparing performance documentation, analyzing optimization efforts, or generating milestone/release reports. |
| allowed-tools | Bash, Read, Write, Grep |
HammerEngine Benchmark Report Generator
This Skill creates comprehensive, professional-quality performance reports from SDL3 HammerEngine benchmark results. Perfect for documentation, stakeholder updates, or performance tracking over time.
Report Capabilities
- Data Aggregation - Collect metrics from all benchmark test results
- Statistical Analysis - Calculate mean, median, stddev, percentiles
- Visual Representation - Generate ASCII charts and tables
- Trend Analysis - Compare against historical baselines
- Callgrind Integration - Include profiling hotspot analysis
- Professional Formatting - Markdown/HTML/PDF output formats
- Executive Summary - High-level overview for stakeholders
Input Sources
Benchmark Result Files
Location: $PROJECT_ROOT/test_results/
(Ensure PROJECT_ROOT environment variable is set to project root directory)
Files to Scan:
$PROJECT_ROOT/test_results/
├── ai_benchmark/
│ ├── performance_metrics.txt
│ └── performance_report.md
├── collision_benchmark/
│ ├── performance_metrics.txt
│ └── performance_report.md
├── pathfinder_benchmark/
│ ├── performance_metrics.txt
│ └── performance_report.md
├── event_manager_scaling/
│ ├── performance_metrics.txt
│ └── performance_report.md
├── particle_benchmark/
│ ├── performance_metrics.txt
│ └── performance_report.md
├── ui_stress/
│ ├── performance_metrics.txt
│ └── performance_report.md
└── valgrind/
├── callgrind/
│ └── callgrind.out.*
└── cache/
└── cachegrind.out.*
Historical Baselines (if available)
$PROJECT_ROOT/test_results/baseline/
$PROJECT_ROOT/test_results/baseline_history/
Execution Steps
Step 1: Discover Available Benchmark Results
Scan for results:
find "$PROJECT_ROOT/test_results/" -name "performance_metrics.txt" -type f
Expected benchmarks:
- AI System Benchmark
- Collision System Benchmark
- Pathfinder Benchmark
- Event Manager Scaling
- Particle Manager Benchmark
- UI Stress Tests
For each found result:
- Record timestamp (from file modification date)
- Extract all metrics
- Categorize by system
Step 2: Extract and Parse Metrics
Extraction Patterns:
AI System Metrics (Dual Benchmark System)
Synthetic Benchmarks (AIManager infrastructure):
grep -B 5 -A 10 "TestSynthetic" "$PROJECT_ROOT/test_results/ai_scaling_benchmark_"*.txt | \
grep -E "Entity updates per second:|entities"
Integrated Benchmarks (Production behaviors):
grep -B 5 -A 10 "TestIntegrated" "$PROJECT_ROOT/test_results/ai_scaling_benchmark_"*.txt | \
grep -E "Entity updates per second:|entities"
Parse into structure:
AI_System_Synthetic:
Entity_100: 170000
Entity_200: 750000
Entity_1000: 975000
Entity_5000: 925000
Entity_10000: 995000
AI_System_Integrated:
Entity_100: 569152
Entity_200: 579794
Entity_500: 611098
Entity_1000: 1192606
Entity_2000: 1587491
Collision System Metrics
grep -E "^(Collision Checks|Query Time|Hash Efficiency|AABB Tests):" \
"$PROJECT_ROOT/test_results/collision_benchmark/performance_metrics.txt"
Pathfinder Metrics
grep -E "^(Path Calculation|Nodes Explored|Cache Hits|A\* Performance):" \
"$PROJECT_ROOT/test_results/pathfinder_benchmark/performance_metrics.txt"
Event Manager Metrics
grep -E "^(Events/sec|Dispatch Latency|Queue Depth|Peak Throughput):" \
"$PROJECT_ROOT/test_results/event_manager_scaling/performance_metrics.txt"
Particle Manager Metrics
grep -E "^(Particles/frame|Render Time|Batch Count|Culling Efficiency):" \
"$PROJECT_ROOT/test_results/particle_benchmark/performance_metrics.txt"
UI System Metrics
grep -E "^(Components|Render Time|Event Handling|DPI Scaling):" \
"$PROJECT_ROOT/test_results/ui_stress/performance_metrics.txt"
Step 3: Statistical Analysis
For each metric with multiple data points:
Calculate Statistics
def calculate_statistics(values):
"""Calculate statistical measures for a set of values"""
n = len(values)
mean = sum(values) / n
# Median
sorted_values = sorted(values)
median = sorted_values[n//2] if n % 2 == 1 else \
(sorted_values[n//2-1] + sorted_values[n//2]) / 2
# Standard Deviation
variance = sum((x - mean) ** 2 for x in values) / n
stddev = variance ** 0.5
# Percentiles
p50 = median
p95 = sorted_values[int(n * 0.95)]
p99 = sorted_values[int(n * 0.99)]
# Min/Max
min_val = min(values)
max_val = max(values)
return {
'mean': mean,
'median': median,
'stddev': stddev,
'p50': p50,
'p95': p95,
'p99': p99,
'min': min_val,
'max': max_val,
'coefficient_of_variation': (stddev / mean) * 100 if mean > 0 else 0
}
Apply to metrics:
- If multiple benchmark runs exist, aggregate data
- Calculate statistics for each metric
- Identify outliers (values > 2 stddev from mean)
Step 4: Callgrind Analysis (if available)
Parse Callgrind Output:
# Find most recent callgrind output
CALLGRIND_FILE=$(ls -t "$PROJECT_ROOT/test_results/valgrind/callgrind/callgrind.out."* 2>/dev/null | head -n 1)
if [ -f "$CALLGRIND_FILE" ]; then
# Extract top hotspots using callgrind_annotate
callgrind_annotate --auto=yes "$CALLGRIND_FILE" | head -n 50
fi
Extract:
- Top 10 functions by time (Ir - instruction reads)
- Top 10 functions by calls
- Call graphs for critical paths (AI update, collision detection, rendering)
Example Hotspot Data:
Function Ir %
AIManager::updateBehaviors() 15,234M 45.2%
CollisionManager::detectCollisions() 6,123M 18.1%
PathfinderManager::calculatePath() 4,056M 12.0%
Step 5: Trend Analysis (if baselines available)
Compare Against Baseline:
For each metric:
- Load baseline value (if exists)
- Calculate percentage change
- Determine trend direction (improving/degrading/stable)
- Identify long-term trends (if multiple historical baselines)
Trend Classification:
- 📈 Improving: >5% better than baseline
- 📉 Degrading: >5% worse than baseline
- ➡️ Stable: Within ±5% of baseline
- 🆕 New: No baseline for comparison
Step 6: Generate Report Sections
Section 1: Executive Summary
# SDL3 HammerEngine Performance Report
**Generated:** YYYY-MM-DD HH:MM:SS
**Benchmark Suite Version:** <git-commit-hash>
**Branch:** <current-branch>
**Platform:** <OS-version>
**Build Type:** Debug/Release
---
## Executive Summary
### Overall Performance: ✓ EXCELLENT / ✓ GOOD / ⚠ FAIR / ❌ NEEDS IMPROVEMENT
SDL3 HammerEngine demonstrates <strong/adequate/weak> performance across all critical systems:
- **AI System:** Handles 10,000+ entities at 62 FPS with 5.8% CPU (Target: 60+ FPS, <6% CPU) ✓
- **Collision System:** 125,000 collision checks/sec, 0.08ms query time ✓
- **Pathfinding:** 8.5ms path calculation, 78% cache hit rate ✓
- **Event System:** 8,500 events/sec throughput, 0.12ms dispatch latency ✓
- **Particle System:** 5,000 particles/frame, 3.2ms render time ✓
- **UI System:** 1,000 components, 4.5ms render time ✓
### Key Achievements
- AI system exceeds 10K entity target with headroom
- Collision system optimization improved query speed by 12%
- Event throughput supports 8K+ concurrent events
- All systems meet or exceed performance targets
### Areas for Improvement
- Event dispatch latency increased 8% (monitor)
- AI behavior updates showing slight variance (9% stddev)
### Recommendation
**Status:** Ready for production
**Next Milestones:** Optimize event dispatching, stabilize AI behavior timing
Section 2: Detailed System Analysis
## Detailed Performance Analysis
### AI System - Synthetic Benchmarks (Infrastructure Performance)
#### Purpose
Tests AIManager infrastructure without integration overhead
#### Benchmark Results
| Entity Count | Value (updates/sec) | Status | Baseline | Change |
|--------------|---------------------|--------|----------|--------|
| 100 | 170K | ✓ | 170K | 0.0% |
| 200 | 750K | ✓ | 750K | 0.0% |
| 1000 | 975K | ✓ | 975K | 0.0% |
| 5000 | 925K | ✓ | 925K | 0.0% |
| 10000 | 995K | ✓ | 995K | 0.0% |
#### Threading Efficiency
- Single-threaded (100): 170K updates/sec
- Multi-threaded (5000): 925K updates/sec
- Speedup: 5.4x
#### Statistical Summary
- Mean: 963K updates/sec (across entity counts)
- Std Dev: 138K (14% CoV)
- Consistent performance across entity scales
---
### AI System - Integrated Benchmarks (Production Workload)
#### Purpose
Tests AIManager with PathfinderManager/CollisionManager integration
#### Benchmark Results
| Entity Count | Value (updates/sec) | Status | Baseline | Change |
|--------------|---------------------|--------|----------|--------|
| 100 | 569K | ✓ | 569K | 0.0% |
| 200 | 580K | ✓ | 580K | 0.0% |
| 500 | 611K | ✓ | 611K | 0.0% |
| 1000 | 1193K | ✓ | 1193K | 0.0% |
| 2000 | 1587K | ✓ | 1587K | 0.0% |
#### Threading Efficiency
- Single-threaded (100): 569K updates/sec
- Multi-threaded (2000): 1587K updates/sec
- Speedup: 2.8x
#### Statistical Summary
- Mean: 908K updates/sec (across entity counts)
- Std Dev: 444K (49% CoV)
- Performance scales with entity count
---
### AI System - Integration Overhead Analysis
#### Overhead Metrics
| Entity Count | Synthetic | Integrated | Overhead | Assessment |
|--------------|-----------|------------|----------|------------|
| 100 | 170K/s | 569K/s | -70% | Data inconsistency* |
| 200 | 750K/s | 580K/s | +23% | Expected |
| 1000 | 975K/s | 1193K/s | -22% | Data inconsistency* |
| 2000 | N/A | 1587K/s | N/A | N/A |
*Note: Negative overhead indicates synthetic values are estimates while integrated are measured.
Expected overhead: 20-40% (integrated slower due to PathfinderManager)
#### Overhead Sources
- PathfinderManager: Path requests, cache lookups, A* computation
- CollisionManager: Spatial hash queries for neighbors
- Production behaviors: Complex state machines and calculations
**Stability Analysis:**
- ✓ FPS variance low (2.9% CoV) - excellent stability
- ✓ CPU usage consistent (0.3% stddev)
- ✓ Update time predictable (<1ms variance)
#### Performance Profile (Callgrind Hotspots)
Top functions by instruction reads:
1. `AIManager::updateBehaviors()` - 45.2% (expected, main update loop)
2. `AIManager::processBatch()` - 12.3% (batch processing)
3. `BehaviorCache::lookup()` - 8.7% (cache lookups)
4. `ChaseBehavior::executeLogic()` - 6.1% (behavior logic)
5. `PathfinderManager::requestPath()` - 4.2% (pathfinding integration)
**Analysis:** Hotspot distribution is as expected. Most time in core update loop.
#### Trend Analysis
Performance trend over time (vs historical baselines):
FPS History: Jan 2025: 62.3 FPS ← Current Dec 2024: 61.8 FPS (+0.8% improvement) Nov 2024: 59.2 FPS (+5.2% improvement)
📈 **Trend:** Improving steadily
#### Recommendations
1. **Maintain current performance** - AI system exceeds targets
2. **Monitor behavior update variance** - Consider additional caching
3. **Document batch processing optimization** - Apply pattern to other systems
Repeat similar detailed analysis for:
- Collision System
- Pathfinding System
- Event Manager
- Particle Manager
- UI System
Section 3: Cross-System Analysis
## Cross-System Performance Comparison
### Frame Budget Analysis (60 FPS = 16.67ms budget)
| System | Time (ms) | % Budget | Status |
|--------|-----------|----------|--------|
| AI Update | 12.4 | 74.4% | ✓ |
| Collision Detection | 2.8 | 16.8% | ✓ |
| Pathfinding | 1.2 | 7.2% | ✓ |
| Event Processing | 0.5 | 3.0% | ✓ |
| Particle Update | 0.8 | 4.8% | ✓ |
| UI Rendering | 4.5 | 27.0% | ✓ |
| **Total** | **22.2** | **133.3%** | ⚠ |
**Note:** Total exceeds 100% because systems run on separate threads (update vs render).
**Update Thread Budget (60 FPS = 16.67ms):**
- AI: 12.4ms
- Collision: 2.8ms
- Pathfinding: 1.2ms
- Event: 0.5ms
- **Total Update:** 16.9ms (101% of budget) ⚠ Slight overrun
**Render Thread Budget:**
- Particle Render: 0.8ms
- UI Render: 4.5ms
- World Render: 3.2ms
- **Total Render:** 8.5ms (51% of budget) ✓ Plenty of headroom
### System Interaction Analysis
**AI ↔ Pathfinding:**
- Pathfinding requests/frame: 15
- Average latency: 8.5ms
- Cache hit rate: 78%
- ✓ Integration efficient
**Collision ↔ Pathfinding:**
- Dynamic obstacle updates: 50/frame
- Pathfinding weight adjustments: 12/frame
- ✓ Integration smooth
**Event ↔ All Systems:**
- Event throughput: 8,500 events/sec
- Dispatch latency: 0.12ms
- Queue depth: 128 events
- ✓ No bottlenecks detected
### Resource Usage Summary
**CPU Usage by System:**
AI Manager: 5.8% Collision Manager: 2.3% Pathfinder: 1.2% Event Manager: 0.8% Particle Manager: 1.5% UI Manager: 0.9% Total Engine: 12.5%
**Memory Usage:**
AI Manager: 45 MB Collision Manager: 32 MB Pathfinder: 18 MB Event Manager: 8 MB Particle Manager: 12 MB UI Manager: 15 MB Total Engine: 130 MB
Section 4: Optimization Opportunities
## Optimization Opportunities
### High Priority
1. **Update Thread Frame Budget Overrun**
- Current: 16.9ms (101% of 16.67ms budget)
- Impact: Occasional frame drops
- Recommendation: Reduce AI update time by 0.5ms
- Approach: Increase batch size or optimize behavior cache
2. **Event Dispatch Latency Increase**
- Current: 0.12ms (up 8% from baseline)
- Impact: Slight event processing delay
- Recommendation: Profile event dispatch path
- Approach: Reduce lock contention or optimize event routing
### Medium Priority
3. **Pathfinding Cache Hit Rate**
- Current: 78%
- Target: 85%+
- Recommendation: Increase cache size or improve eviction policy
- Expected Improvement: Reduce path calculation time by ~15%
4. **Particle Culling Efficiency**
- Current: 88%
- Target: 95%+
- Recommendation: Improve camera frustum culling
- Expected Improvement: Reduce render time by ~10%
### Low Priority
5. **UI Component Render Time**
- Current: 4.5ms (stable, within budget)
- Opportunity: Apply batching technique from particle system
- Expected Improvement: Reduce to 3.5ms (~22% faster)
Section 5: Historical Trends
## Performance Trends
### AI System FPS Over Time
68 ┤ 66 ┤ ╭─ 64 ┤ ╭─╯ 62 ┤ ╭───╯ ← Current (62.3) 60 ┤ ╭─╯ 58 ┤╭─╯ 56 ┼───────────────────────── Nov Dec Jan 2024 2024 2025
**Trend:** 📈 Improving (+5.2% over 3 months)
### Collision System Query Time
0.12 ┤╮ 0.10 ┤ ╰╮ 0.08 ┤ ╰───────╮ ← Current (0.08ms) 0.06 ┤ ╰─ 0.04 ┼───────────────────────── Nov Dec Jan 2024 2024 2025
**Trend:** 📈 Improving (-33% over 3 months)
### Event Throughput
9000 ┤ ╭─── ← Current (8500/sec) 8500 ┤ ╭─╯ 8000 ┤ ╭─╯ 7500 ┤╭─╯ 7000 ┼───────────────────────── Nov Dec Jan 2024 2024 2025
**Trend:** 📈 Improving (+21% over 3 months)
Section 6: Comparative Analysis
## Comparative Analysis
### Performance vs Industry Standards
| System | HammerEngine | Industry Avg | Status |
|--------|--------------|--------------|--------|
| Entity Count @ 60 FPS | 10,000 | 5,000-8,000 | ✓ Above Avg |
| Collision Checks/sec | 125,000 | 80,000-100,000 | ✓ Above Avg |
| Event Throughput | 8,500/sec | 5,000-10,000 | ✓ Average |
| Memory/Entity | 13 KB | 10-20 KB | ✓ Average |
**Overall:** HammerEngine performs above industry averages for 2D game engines.
### Performance vs Project Goals
| Goal | Target | Current | Status |
|------|--------|---------|--------|
| 10K+ Entities @ 60 FPS | 60 FPS | 62.3 FPS | ✓ Exceeded |
| AI CPU Usage | <6% | 5.8% | ✓ Met |
| Event Throughput | 10K/sec | 8.5K/sec | ⚠ 85% of goal |
| Collision Efficiency | N/A | 94.2% hash | ✓ Excellent |
| Pathfinding Speed | <10ms | 8.5ms | ✓ Met |
**Overall Progress:** 80% of goals met or exceeded
Section 7: Technical Details
## Technical Details
### Test Environment
- **Hardware:** <CPU-model>, <RAM-size>
- **OS:** Linux 6.16.4 (Bazzite Fedora 42)
- **Compiler:** GCC/Clang <version>, C++20
- **Build Flags:** -O3 -flto -march=x86-64-v3 -mavx2
- **SDL Version:** SDL3 (latest)
### Benchmark Methodology
- **Duration:** 20 minutes total
- **Repetitions:** 5 runs per benchmark (median reported)
- **Warm-up:** 30 seconds per test
- **Isolation:** Tests run sequentially, system idle
- **Profiling:** Callgrind with 1% sampling
### Data Collection
- **Metrics Collection:** Automated via test scripts
- **Storage:** $PROJECT_ROOT/test_results/ directory
- **Baseline:** Updated monthly
- **History:** 6 months retained
### Reliability
- **FPS Variance:** 2.9% CoV (excellent)
- **CPU Variance:** 5.1% CoV (good)
- **Memory Variance:** 1.2% CoV (excellent)
**Overall:** Results are highly reliable and reproducible.
Section 8: Appendices
## Appendix A: Raw Metrics
### AI System Benchmark (Raw Data)
Entities: 10000 FPS: 62.3 CPU: 5.8% Update Time: 12.4ms Batch Processing: 2.1ms Behavior Updates: 8.3ms Memory Usage: 45 MB Thread Safety: Mutex-protected Double Buffer: Enabled Cache Efficiency: 92%
<Include raw data for all systems>
## Appendix B: Callgrind Full Output
Appendix C: Test Scripts
All benchmark tests are located in:
tests/test_scripts/run_ai_system_benchmark.shtests/test_scripts/run_collision_benchmark.sh
Run full suite:
./run_all_tests.sh --benchmarks-only
Appendix D: Baseline History
| Date | AI FPS | Collision Checks | Event Throughput |
|---|---|---|---|
| 2025-01-15 | 62.3 | 125,000 | 8,500 |
| 2024-12-15 | 61.8 | 120,000 | 8,200 |
| 2024-11-15 | 59.2 | 110,000 | 7,000 |
Step 7: Format Report
Output Formats:
1. Markdown (Default)
Save to:
docs/performance_reports/performance_report_YYYY-MM-DD.md
Advantages:
- Easy to read in text editor
- Version control friendly
- Can be converted to other formats
2. HTML (Optional)
Convert markdown to HTML:
# If pandoc available
pandoc performance_report.md -o performance_report.html \
--standalone \
--css=report_style.css \
--metadata title="HammerEngine Performance Report"
Advantages:
- Interactive charts (if using JavaScript)
- Better for web viewing
- Professional appearance
3. PDF (Optional)
Convert markdown to PDF:
# If pandoc + LaTeX available
pandoc performance_report.md -o performance_report.pdf \
--pdf-engine=xelatex \
--variable geometry:margin=1in \
--variable fontsize=11pt \
--metadata title="HammerEngine Performance Report"
Advantages:
- Professional document
- Easy to share with stakeholders
- Print-ready
Step 8: Generate Summary Output
Console Output:
=== HammerEngine Benchmark Report Generated ===
Report Date: 2025-01-15 14:30:22
Benchmarks Analyzed: 6 systems
Metrics Collected: 42 data points
Baseline Comparison: Available (2024-12-15)
Performance Status: ✓ EXCELLENT
Key Highlights:
✓ AI System: 10,000 entities @ 62.3 FPS
✓ Collision: 125,000 checks/sec
✓ Pathfinding: 8.5ms avg calculation
⚠ Event Dispatch: +8% latency (monitor)
Report Generated:
📄 Markdown: docs/performance_reports/performance_report_2025-01-15.md
🌐 HTML: docs/performance_reports/performance_report_2025-01-15.html
📑 PDF: docs/performance_reports/performance_report_2025-01-15.pdf
Report Size: 2.3 MB (includes charts and raw data)
Generation Time: 2m 15s
Next Steps:
1. Review optimization opportunities (Section 4)
2. Address update thread budget overrun
3. Monitor event dispatch latency trend
4. Update baseline after validating improvements
---
Report ready for distribution
Usage Examples
When the user says:
- "generate performance report"
- "create benchmark report"
- "document current performance"
- "prepare performance analysis"
- "make stakeholder report"
Activate this Skill automatically.
Report Customization Options
Ask user for:
Report Scope:
- All systems (default)
- Specific systems only (specify which)
Detail Level:
- Executive summary only
- Full detailed report (default)
- Technical deep-dive (includes callgrind)
Output Formats:
- Markdown (always included)
- HTML
Include Sections:
- Executive Summary
- System Analysis
- Trends
- Callgrind Hotspots (if available)
- Optimization Recommendations
- Raw Data Appendices
Comparison:
- vs Baseline only
- vs Historical baselines (trend)
- vs Industry standards
Performance Expectations
- Data Collection: 1-2 minutes
- Analysis: 30-60 seconds
- Report Generation: 30-60 seconds
- Total Time: 2-4 minutes
Manual equivalent: 45-60 minutes
Integration with Workflow
Use this Skill:
- After completing benchmark runs
- Before milestone releases
- For monthly performance tracking
- When preparing stakeholder updates
- To document optimization efforts
- Before/after major refactoring
File Management
Reports are saved to:
docs/performance_reports/
├── performance_report_2025-01-15.md
├── performance_report_2025-01-15.html
├── performance_report_2025-01-15.pdf
└── latest_report.md (symlink to most recent)
Cleanup old reports:
# Keep last 12 months, archive older
find docs/performance_reports/ -name "*.md" -mtime +365 -exec mv {} archive/ \;
Quality Assurance
Report includes:
- ✓ All benchmark systems analyzed
- ✓ Statistical validity checks (min 3 data points)
- ✓ Trend analysis (if historical data available)
- ✓ Clear status indicators (✓/⚠/❌)
- ✓ Actionable recommendations
- ✓ Professional formatting
- ✓ Version information (git commit, date)
- ✓ Reproducibility information (test environment)
Advanced Features
ASCII Charts
Generate simple ASCII charts for trends:
FPS Trend:
68 ┤ ╭─
66 ┤ ╭─╯
64 ┤ ╭─╯
62 ┤ ╭─╯
60 ┤ ╭─╯
58 ┤╭─╯
└─────────────
Sparklines
Compact trend indicators:
- AI FPS: ▁▂▃▅▆█ (improving)
- Collision: ███▇▅▃ (degrading)
Color Coding (in HTML/PDF)
- 🟢 Green: Exceeds targets
- 🟡 Yellow: Meets targets
- 🟠 Orange: Below targets (warning)
- 🔴 Red: Critical issues
Error Handling
If no benchmark data found:
- Report: "No benchmark data available. Run benchmarks first:"
- Show command:
./run_all_tests.sh --benchmarks-only
If baseline missing:
- Note in report: "No baseline for comparison. This will serve as baseline."
- Save current metrics as baseline
If incomplete data:
- Note missing systems in report
- Generate partial report
- Recommend running missing benchmarks
Exit Codes
- 0: Report generated successfully
- 1: No benchmark data found
- 2: Report generation failed
- 3: Partial report (missing data)
Time Savings
Manual Process: ~45-60 minutes
- Collect metrics: 10 min
- Calculate statistics: 15 min
- Format tables: 10 min
- Write analysis: 15 min
- Generate charts: 10 min
With This Skill: ~2-4 minutes
- Automated collection
- Automated analysis
- Automated formatting
Total Time Saved: ~40-55 minutes per report