| name | V3 Performance Optimization |
| description | Achieve aggressive v3 performance targets: 2.49x-7.47x Flash Attention speedup, 150x-12,500x search improvements, 50-75% memory reduction. Comprehensive benchmarking and optimization suite. |
V3 Performance Optimization
What This Skill Does
Validates and optimizes claude-flow v3 to achieve industry-leading performance through Flash Attention, AgentDB HNSW indexing, and comprehensive system optimization with continuous benchmarking.
Quick Start
# Initialize performance optimization
Task("Performance baseline", "Establish v2 performance benchmarks", "v3-performance-engineer")
# Target validation (parallel)
Task("Flash Attention", "Validate 2.49x-7.47x speedup target", "v3-performance-engineer")
Task("Search optimization", "Validate 150x-12,500x search improvement", "v3-performance-engineer")
Task("Memory optimization", "Achieve 50-75% memory reduction", "v3-performance-engineer")
Performance Target Matrix
Flash Attention Revolution
┌─────────────────────────────────────────┐
│ FLASH ATTENTION │
├─────────────────────────────────────────┤
│ Baseline: Standard attention │
│ Target: 2.49x - 7.47x speedup │
│ Memory: 50-75% reduction │
│ Latency: Sub-millisecond processing │
└─────────────────────────────────────────┘
Search Performance Revolution
┌─────────────────────────────────────────┐
│ SEARCH OPTIMIZATION │
├─────────────────────────────────────────┤
│ Current: O(n) linear search │
│ Target: 150x - 12,500x improvement │
│ Method: HNSW indexing │
│ Latency: <100ms for 1M+ entries │
└─────────────────────────────────────────┘
Comprehensive Benchmark Suite
Startup Performance
class StartupBenchmarks {
async benchmarkColdStart(): Promise<BenchmarkResult> {
const startTime = performance.now();
await this.initializeCLI();
await this.initializeMCPServer();
await this.spawnTestAgent();
const totalTime = performance.now() - startTime;
return {
total: totalTime,
target: 500, // ms
achieved: totalTime < 500
};
}
}
Memory Operation Benchmarks
class MemoryBenchmarks {
async benchmarkVectorSearch(): Promise<SearchBenchmark> {
const queries = this.generateTestQueries(10000);
// Baseline: Current linear search
const baselineTime = await this.timeOperation(() =>
this.currentMemory.searchAll(queries)
);
// Target: HNSW search
const hnswTime = await this.timeOperation(() =>
this.agentDBMemory.hnswSearchAll(queries)
);
const improvement = baselineTime / hnswTime;
return {
baseline: baselineTime,
hnsw: hnswTime,
improvement,
targetRange: [150, 12500],
achieved: improvement >= 150
};
}
async benchmarkMemoryUsage(): Promise<MemoryBenchmark> {
const baseline = process.memoryUsage().heapUsed;
await this.loadTestDataset();
const withData = process.memoryUsage().heapUsed;
await this.enableOptimization();
const optimized = process.memoryUsage().heapUsed;
const reduction = (withData - optimized) / withData;
return {
baseline,
withData,
optimized,
reductionPercent: reduction * 100,
targetReduction: [50, 75],
achieved: reduction >= 0.5
};
}
}
Swarm Coordination Benchmarks
class SwarmBenchmarks {
async benchmark15AgentCoordination(): Promise<SwarmBenchmark> {
const agents = await this.spawn15Agents();
// Coordination latency
const coordinationTime = await this.timeOperation(() =>
this.coordinateSwarmTask(agents)
);
// Task decomposition
const decompositionTime = await this.timeOperation(() =>
this.decomposeComplexTask()
);
// Consensus achievement
const consensusTime = await this.timeOperation(() =>
this.achieveSwarmConsensus(agents)
);
return {
coordination: coordinationTime,
decomposition: decompositionTime,
consensus: consensusTime,
agentCount: 15,
efficiency: this.calculateEfficiency(agents)
};
}
}
Flash Attention Benchmarks
class AttentionBenchmarks {
async benchmarkFlashAttention(): Promise<AttentionBenchmark> {
const sequences = this.generateSequences([512, 1024, 2048, 4096]);
const results = [];
for (const sequence of sequences) {
// Baseline attention
const baselineResult = await this.benchmarkStandardAttention(sequence);
// Flash attention
const flashResult = await this.benchmarkFlashAttention(sequence);
results.push({
sequenceLength: sequence.length,
speedup: baselineResult.time / flashResult.time,
memoryReduction: (baselineResult.memory - flashResult.memory) / baselineResult.memory,
targetSpeedup: [2.49, 7.47],
achieved: this.checkTarget(flashResult, [2.49, 7.47])
});
}
return {
results,
averageSpeedup: this.calculateAverage(results, 'speedup'),
averageMemoryReduction: this.calculateAverage(results, 'memoryReduction')
};
}
}
SONA Learning Benchmarks
class SONABenchmarks {
async benchmarkAdaptationTime(): Promise<SONABenchmark> {
const scenarios = [
'pattern_recognition',
'task_optimization',
'error_correction',
'performance_tuning'
];
const results = [];
for (const scenario of scenarios) {
const startTime = performance.hrtime.bigint();
await this.sona.adapt(scenario);
const endTime = performance.hrtime.bigint();
const adaptationTimeMs = Number(endTime - startTime) / 1000000;
results.push({
scenario,
adaptationTime: adaptationTimeMs,
target: 0.05, // ms
achieved: adaptationTimeMs <= 0.05
});
}
return {
scenarios: results,
averageTime: results.reduce((sum, r) => sum + r.adaptationTime, 0) / results.length,
successRate: results.filter(r => r.achieved).length / results.length
};
}
}
Performance Monitoring Dashboard
Real-time Metrics
class PerformanceMonitor {
async collectMetrics(): Promise<PerformanceSnapshot> {
return {
timestamp: Date.now(),
flashAttention: await this.measureFlashAttention(),
searchPerformance: await this.measureSearchSpeed(),
memoryUsage: await this.measureMemoryEfficiency(),
startupTime: await this.measureStartupLatency(),
sonaAdaptation: await this.measureSONASpeed(),
swarmCoordination: await this.measureSwarmEfficiency()
};
}
async generateReport(): Promise<PerformanceReport> {
const snapshot = await this.collectMetrics();
return {
summary: this.generateSummary(snapshot),
achievements: this.checkTargetAchievements(snapshot),
trends: this.analyzeTrends(),
recommendations: this.generateOptimizations(),
regressions: await this.detectRegressions()
};
}
}
Continuous Regression Detection
class PerformanceRegression {
async detectRegressions(): Promise<RegressionReport> {
const current = await this.runFullBenchmark();
const baseline = await this.getBaseline();
const regressions = [];
for (const [metric, currentValue] of Object.entries(current)) {
const baselineValue = baseline[metric];
const change = (currentValue - baselineValue) / baselineValue;
if (change < -0.05) { // 5% regression threshold
regressions.push({
metric,
baseline: baselineValue,
current: currentValue,
regressionPercent: change * 100,
severity: this.classifyRegression(change)
});
}
}
return {
hasRegressions: regressions.length > 0,
regressions,
recommendations: this.generateRegressionFixes(regressions)
};
}
}
Optimization Strategies
Memory Optimization
class MemoryOptimization {
async optimizeMemoryUsage(): Promise<OptimizationResult> {
// Implement memory pooling
await this.setupMemoryPools();
// Enable garbage collection tuning
await this.optimizeGarbageCollection();
// Implement object reuse patterns
await this.setupObjectPools();
// Enable memory compression
await this.enableMemoryCompression();
return this.validateMemoryReduction();
}
}
CPU Optimization
class CPUOptimization {
async optimizeCPUUsage(): Promise<OptimizationResult> {
// Implement worker thread pools
await this.setupWorkerThreads();
// Enable CPU-specific optimizations
await this.enableSIMDInstructions();
// Implement task batching
await this.optimizeTaskBatching();
return this.validateCPUImprovement();
}
}
Target Validation Framework
Performance Gates
class PerformanceGates {
async validateAllTargets(): Promise<ValidationReport> {
const results = await Promise.all([
this.validateFlashAttention(), // 2.49x-7.47x
this.validateSearchPerformance(), // 150x-12,500x
this.validateMemoryReduction(), // 50-75%
this.validateStartupTime(), // <500ms
this.validateSONAAdaptation() // <0.05ms
]);
return {
allTargetsAchieved: results.every(r => r.achieved),
results,
overallScore: this.calculateOverallScore(results),
recommendations: this.generateRecommendations(results)
};
}
}
Success Metrics
Primary Targets
- Flash Attention: 2.49x-7.47x speedup validated
- Search Performance: 150x-12,500x improvement confirmed
- Memory Reduction: 50-75% usage optimization achieved
- Startup Time: <500ms cold start consistently
- SONA Adaptation: <0.05ms learning response time
- 15-Agent Coordination: Efficient parallel execution
Continuous Monitoring
- Performance Dashboard: Real-time metrics collection
- Regression Testing: Automated performance validation
- Trend Analysis: Performance evolution tracking
- Alert System: Immediate regression notification
Related V3 Skills
v3-integration-deep- Performance integration with agentic-flowv3-memory-unification- Memory performance optimizationv3-swarm-coordination- Swarm performance coordinationv3-security-overhaul- Secure performance patterns
Usage Examples
Complete Performance Validation
# Full performance suite
npm run benchmark:v3
# Specific target validation
npm run benchmark:flash-attention
npm run benchmark:agentdb-search
npm run benchmark:memory-optimization
# Continuous monitoring
npm run monitor:performance