| name | microsoft-agent-framework |
| description | Expert guidance for building AI agents and multi-agent workflows using Microsoft Agent Framework for .NET. Use when (1) creating AI agents with OpenAI or Azure OpenAI, (2) implementing function tools and structured outputs, (3) building multi-turn conversations, (4) designing graph-based workflows with streaming/checkpointing, (5) implementing middleware pipelines, (6) orchestrating multi-agent systems with fan-out/fan-in patterns, (7) adding human-in-the-loop interactions, (8) integrating OpenTelemetry observability, or (9) exposing agents as MCP tools. |
Microsoft Agent Framework for .NET
Overview
Microsoft Agent Framework is a framework for building, orchestrating, and deploying AI agents and multi-agent workflows. It provides graph-based workflows with streaming, checkpointing, human-in-the-loop, and time-travel capabilities.
Installation
# Core AI package
dotnet add package Microsoft.Agents.AI
# OpenAI/Azure OpenAI support
dotnet add package Microsoft.Agents.AI.OpenAI --prerelease
# Google Gemini support (via Microsoft.Extensions.AI)
dotnet add package Mscc.GenerativeAI.Microsoft
# Azure identity for authentication
dotnet add package Azure.Identity
Quick Start
Basic Agent with OpenAI
using Microsoft.Agents.AI;
using OpenAI;
var agent = new OpenAIClient("<api-key>")
.GetOpenAIResponseClient("gpt-4o-mini")
.CreateAIAgent(
name: "Assistant",
instructions: "You are a helpful assistant."
);
Console.WriteLine(await agent.RunAsync("Hello!"));
Azure OpenAI with Azure CLI Auth
using Azure.AI.OpenAI;
using Azure.Identity;
using Microsoft.Agents.AI;
var agent = new AzureOpenAIClient(
new Uri("https://<resource>.openai.azure.com/"),
new AzureCliCredential())
.GetChatClient("gpt-4o-mini")
.CreateAIAgent(instructions: "You are helpful.");
Console.WriteLine(await agent.RunAsync("Tell me a joke."));
Azure OpenAI with Bearer Token
var agent = new OpenAIClient(
new BearerTokenPolicy(
new AzureCliCredential(),
"https://ai.azure.com/.default"),
new OpenAIClientOptions
{
Endpoint = new Uri("https://<resource>.openai.azure.com/openai/v1")
})
.GetOpenAIResponseClient("gpt-4o-mini")
.CreateAIAgent(name: "Bot", instructions: "You are helpful.");
Google Gemini
using Mscc.GenerativeAI;
using Mscc.GenerativeAI.Microsoft;
using Microsoft.Agents.AI;
var googleAI = new GoogleAI("<gemini-api-key>");
var geminiModel = googleAI.GenerativeModel("gemini-2.0-flash");
IChatClient chatClient = geminiModel.AsIChatClient();
var agent = chatClient.CreateAIAgent(
name: "Assistant",
instructions: "You are a helpful assistant."
);
Console.WriteLine(await agent.RunAsync("Hello!"));
Function Tools
Define tools using attributes:
public class WeatherTools
{
[Description("Gets current weather for a location")]
public static string GetWeather(
[Description("City name")] string city)
{
return $"Weather in {city}: Sunny, 72F";
}
}
// Register tools with agent
var agent = client.GetChatClient("gpt-4o-mini")
.CreateAIAgent(
instructions: "Help users check weather.",
tools: [typeof(WeatherTools)]);
await agent.RunAsync("What's the weather in Seattle?");
Function Tools with Approval
For human-in-the-loop approval:
agent.OnToolCall += (sender, args) =>
{
Console.WriteLine($"Tool: {args.ToolName}");
Console.Write("Approve? (y/n): ");
args.Approved = Console.ReadLine()?.ToLower() == "y";
};
Structured Output
Return strongly-typed responses:
public class MovieRecommendation
{
public string Title { get; set; }
public string Genre { get; set; }
public int Year { get; set; }
public string Reason { get; set; }
}
var result = await agent.RunAsync<MovieRecommendation>(
"Recommend a sci-fi movie from the 2020s");
Console.WriteLine($"{result.Title} ({result.Year}) - {result.Reason}");
Multi-Turn Conversations
var agent = client.GetChatClient("gpt-4o-mini")
.CreateAIAgent(instructions: "You are a helpful assistant.");
// First turn
var response1 = await agent.RunAsync("My name is Alice.");
// Continues context
var response2 = await agent.RunAsync("What's my name?");
Persisted Conversations
Save and restore conversation state:
// Save state
var state = agent.GetConversationState();
await File.WriteAllTextAsync("state.json", state.ToJson());
// Restore later
var savedState = ConversationState.FromJson(
await File.ReadAllTextAsync("state.json"));
agent.LoadConversationState(savedState);
Middleware
Add custom processing pipelines:
agent.UseMiddleware(async (context, next) =>
{
Console.WriteLine($"Request: {context.Input}");
var start = DateTime.UtcNow;
await next();
var duration = DateTime.UtcNow - start;
Console.WriteLine($"Response time: {duration.TotalMilliseconds}ms");
});
Multi-Modal (Images)
var result = await agent.RunAsync(
"Describe this image",
images: [File.ReadAllBytes("photo.jpg")]);
Observability with OpenTelemetry
using var tracerProvider = Sdk.CreateTracerProviderBuilder()
.AddSource("Microsoft.Agents")
.AddConsoleExporter()
.Build();
// Agent calls are now traced
await agent.RunAsync("Hello!");
Dependency Injection
services.AddSingleton<AIAgent>(sp =>
{
var client = sp.GetRequiredService<OpenAIClient>();
return client.GetChatClient("gpt-4o-mini")
.CreateAIAgent(instructions: "You are helpful.");
});
Agent as MCP Tool
Expose agent as Model Context Protocol tool:
var mcpTool = agent.AsMcpTool(
name: "research_assistant",
description: "Researches topics and provides summaries");
Agent as Function Tool
Compose agents by exposing one as a tool for another:
var researchAgent = client.GetChatClient("gpt-4o")
.CreateAIAgent(instructions: "You do deep research.");
var mainAgent = client.GetChatClient("gpt-4o-mini")
.CreateAIAgent(
instructions: "Answer questions, use research tool for complex topics.",
tools: [researchAgent.AsFunctionTool("research", "Deep research")]);
Workflows
For complex multi-agent orchestration, see references/workflows.md.
Key workflow patterns:
- Executors and Edges: Basic workflow building blocks
- Streaming: Real-time event streaming
- Fan-Out/Fan-In: Parallel processing
- Checkpointing: Save and resume workflow state
- Human-in-the-Loop: Pause for user input
- Writer-Critic: Iterative refinement loops
Best Practices
- Use Azure CLI credentials for local development
- Add OpenTelemetry for production observability
- Implement middleware for logging, error handling, rate limiting
- Use structured outputs when you need typed responses
- Persist conversation state for stateless services
- Use checkpointing in workflows for reliability
- Implement human-in-the-loop for sensitive operations