| name | multi-ai-orchestration |
| description | Spawner selection, cost optimization, and HeadlessSpawner patterns for coordinating multiple AI models (Codex, Gemini, Copilot, Claude). |
Multi-AI Orchestration Skill
Use this skill for spawner selection, cost optimization, and HeadlessSpawner patterns when coordinating multiple AI models.
Trigger keywords: spawner, multi-ai, headless, codex, gemini, copilot, model selection, cost optimization, parallel agents
CRITICAL: Cost-First Routing (IMPERATIVE)
Claude Code is EXPENSIVE and has usage limits. You MUST use FREE/CHEAP AIs first.
COST HIERARCHY (lowest to highest):
1. Gemini 2.0-Flash: FREE (2M tokens/min) ← USE FIRST
2. Codex (GPT-4): $ (cheap, code-specialized)
3. Copilot: $ (cheap, GitHub integration)
4. Claude Haiku: $$ (fallback ONLY)
5. Claude Sonnet: $$$ (coordination only)
6. Claude Opus: $$$$ (strategic decisions only)
PRE-DELEGATION CHECKLIST (MUST EXECUTE)
BEFORE delegating ANY task, you MUST ask these questions IN ORDER:
┌─────────────────────────────────────────────────────────┐
│ 1. Can Gemini do this? (exploration, research, batch) │
│ → YES = MUST use spawn_gemini (FREE) │
│ → NO = Continue to step 2 │
├─────────────────────────────────────────────────────────┤
│ 2. Is this code work? (implementation, fixes, tests) │
│ → YES = MUST use spawn_codex (cheap, specialized) │
│ → NO = Continue to step 3 │
├─────────────────────────────────────────────────────────┤
│ 3. Is this git/GitHub? (commits, PRs, issues) │
│ → YES = MUST use spawn_copilot (GitHub integration) │
│ → NO = Continue to step 4 │
├─────────────────────────────────────────────────────────┤
│ 4. Does this require deep reasoning? │
│ → YES = Use Claude Opus (expensive, but needed) │
│ → NO = Continue to step 5 │
├─────────────────────────────────────────────────────────┤
│ 5. Is this multi-agent coordination? │
│ → YES = Use Claude Sonnet (mid-tier) │
│ → NO = Use Gemini (FREE) or Haiku (fallback) │
└─────────────────────────────────────────────────────────┘
WRONG vs CORRECT Delegation
❌ WRONG (using Haiku for everything):
- Implementation → Haiku # WRONG: Use Codex
- Git commits → Haiku # WRONG: Use Copilot
- Code generation → Haiku # WRONG: Use Codex
- Research → Haiku # WRONG: Use Gemini (FREE!)
- File analysis → Haiku # WRONG: Use Gemini (FREE!)
✅ CORRECT (cost-first routing):
- Implementation → spawn_codex # Cheap, code-specialized
- Git commits → spawn_copilot # Cheap, GitHub integration
- Research → spawn_gemini # FREE, high context
- File analysis → spawn_gemini # FREE, multimodal
- Strategic planning → Opus # Expensive, but needed
- Haiku → FALLBACK ONLY # When others fail
Task-to-AI Routing Table (IMPERATIVE)
| Task Type | MUST Use | Fallback | Why |
|---|---|---|---|
| Exploration, research, codebase analysis | spawn_gemini | Haiku | FREE, 2M tokens/min, high context |
| Code generation, implementation | spawn_codex | Sonnet | Code-specialized, sandbox isolation |
| Bug fixes, refactoring | spawn_codex | Haiku | Edit tracking, workspace-write |
| Git operations, commits, PRs | spawn_copilot | Haiku | GitHub integration, tool permissions |
| File operations, batch processing | spawn_gemini | Haiku | FREE, fast, multimodal |
| Image/screenshot analysis | spawn_gemini | - | Vision API, multimodal |
| Testing, validation | spawn_codex | Haiku | Can execute tests in sandbox |
| Strategic planning, architecture | Opus | Sonnet | Deep reasoning required |
| Multi-agent coordination | Sonnet | - | Complex coordination |
| Last resort fallback | Haiku | - | When Gemini/Codex/Copilot fail |
Cost Awareness (CRITICAL)
MONTHLY USAGE IMPACT:
Claude Code (Sonnet/Opus): $$$$
- Limited usage quota
- Exhausts quickly with heavy use
- RESERVE for strategic work only
Gemini 2.0-Flash: FREE
- 2M tokens per minute (rate limited)
- 1M token context window
- Multimodal (images, PDFs, audio)
- Use FIRST for exploration
Codex (GPT-4): $
- Cheap for code work
- Sandbox isolation
- Worth premium for specialization
Copilot: $
- Cheap for GitHub work
- Tool permission controls
- Native GitHub integration
Cost Optimization Impact
BEFORE (using Haiku everywhere):
- 10 implementations × Haiku = $$$$
- 5 git commits × Haiku = $$$
- 20 file searches × Haiku = $$$$$
AFTER (cost-first routing):
- 10 implementations × Codex = $$
- 5 git commits × Copilot = $
- 20 file searches × Gemini = FREE
SAVINGS: 80-90% reduction in Claude Code usage
Spawner Selection Matrix
Priority order (first match wins, cost-first):
| Priority | Use Case | Spawner | Cost |
|---|---|---|---|
| 1 | Exploration, research, batch ops | spawn_gemini |
FREE |
| 2 | Code generation, bug fixes | spawn_codex |
$ |
| 3 | Git/GitHub workflows, PRs | spawn_copilot |
$ |
| 4 | Image/multimodal analysis | spawn_gemini |
FREE |
| 5 | Complex reasoning, architecture | spawn_claude |
$$$$ |
| 6 | Fallback when others fail | Task(haiku) |
$$ |
Decision Aid
- "Is this exploratory?" →
spawn_gemini(FREE) - "Is this about code?" →
spawn_codex(cheap) - "Does this involve git?" →
spawn_copilot(cheap) - "Do I need vision?" →
spawn_gemini(FREE) - "Is deep reasoning critical?" →
spawn_claude(expensive) - "Everything else" →
spawn_geminiFIRST, then Haiku fallback
Task() vs spawn_*() Decision
Use spawn_*() when:
- Work can run in isolation (most cases)
- Want cost optimization (Gemini FREE)
- Specialized tool needed (Codex sandbox, Copilot GitHub)
Use Task(haiku) when:
- Work depends on conversation context
- Cache hits matter (same conversation)
- AND spawn_*() has failed or is unavailable
Integration Patterns
Pattern 1: Cost-First Exploration
# ALWAYS start with Gemini for exploration
result = spawn_gemini("Search codebase for all auth patterns")
if not result.success:
# Fallback to Haiku ONLY if Gemini fails
Task(prompt="Search codebase for auth patterns", subagent_type="haiku")
Pattern 2: Code Implementation
# Use Codex for code work (not Haiku!)
result = spawn_codex(
prompt="Implement OAuth authentication",
sandbox="workspace-write"
)
if not result.success:
Task(prompt="Implement OAuth", subagent_type="sonnet") # Fallback
Pattern 3: Git Workflow
# Use Copilot for git (not Haiku!)
result = spawn_copilot(
prompt="Commit changes and create PR",
allow_tools=["shell(git)", "github(*)"]
)
Pattern 4: Multi-Provider (Cost-Optimized)
# Research with FREE Gemini
research = spawn_gemini("Analyze current auth implementation")
# Code with cheap Codex
code = spawn_codex("Implement OAuth based on research")
# Git with cheap Copilot
pr = spawn_copilot("Create PR for OAuth implementation")
# Reserve Claude for strategic decisions ONLY
# architecture = spawn_claude("Design long-term auth strategy")
Cost Optimization Rules (IMPERATIVE)
- ANY exploratory work → MUST use
spawn_gemini(FREE) - ANY code work → MUST use
spawn_codex(cheap, specialized) - ANY git/GitHub work → MUST use
spawn_copilot(cheap, integrated) - Complex reasoning → MAY use
spawn_claude(expensive) - Haiku → ONLY as fallback when above fail
Violating these rules wastes Claude Code quota unnecessarily.
Verification After Spawning
After Gemini/Codex generates code, MUST verify quality:
# Run quality verification script
./scripts/test-quality.sh src/path/to/file.py
# Returns: exit code 0 (pass) or 1 (fail)
# Runs: ruff check, ruff format, mypy, pytest
If verification fails, iterate with the same spawner (not Claude).
For detailed API documentation: → See REFERENCE.md For real-world examples: → See EXAMPLES.md