Claude Code Plugins

Community-maintained marketplace

Feedback

mcp-context-optimizer

@ShunsukeHayashi/Miyabi
11
0

Optimize MCP tool context loading through progressive disclosure and hierarchical indexing. Use when working with large MCP tool sets (e.g., Miyabi's 172 tools) to prevent context window bloat. Triggers include "find tool", "search mcp", "tool lookup", "which tool", "context optimization", or when dealing with many MCP tools.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name mcp-context-optimizer
description Optimize MCP tool context loading through progressive disclosure and hierarchical indexing. Use when working with large MCP tool sets (e.g., Miyabi's 172 tools) to prevent context window bloat. Triggers include "find tool", "search mcp", "tool lookup", "which tool", "context optimization", or when dealing with many MCP tools.
version 1.0.0
author Miyabi

MCP Context Optimizer

Solve the context window bloat problem when working with large MCP tool collections through progressive disclosure and hierarchical indexing.

Problem Statement

Large MCP implementations (like Miyabi with 172 tools across 22 categories) can overwhelm the context window:

  • All tool definitions load into main context
  • Token consumption increases dramatically
  • Risk of selecting wrong tools
  • Slower response times

Solution: Progressive Disclosure Pattern

┌─────────────────────────────────────────────────────────────┐
│  Level 1: Category Index (Always Loaded)                    │
│  ~200 tokens - 22 categories with descriptions              │
├─────────────────────────────────────────────────────────────┤
│  Level 2: Tool Index (On-Demand)                            │
│  ~50 tokens per category - tool names + short descriptions  │
├─────────────────────────────────────────────────────────────┤
│  Level 3: Full Tool Schema (On-Demand)                      │
│  Variable - complete parameters and usage                   │
└─────────────────────────────────────────────────────────────┘

Quick Reference: Miyabi MCP Categories

Category Count Primary Use Case
github 21 Issues, PRs, workflows, releases
git 19 Version control operations
network 15 Connectivity, diagnostics
process 14 Process management
tmux 10 Terminal multiplexer
resource 10 CPU, memory, disk monitoring
file 10 File operations
docker 10 Container management
speckit 9 Spec-driven development
claude 8 Claude Code session
log 7 Log analysis
k8s 6 Kubernetes
db 6 Database operations
compose 4 Docker Compose
time 4 Time utilities
gen 4 UUID, password, hash
linux 3 Systemd services
mcp 3 Tool discovery
calc 3 Math calculations
think 3 Reasoning chains
windows 2 Windows services
health 1 System health

Workflow: Tool Discovery Protocol

Step 1: Identify Category

User Request → Parse Intent → Match Category

Category Matching Rules:

  • Git operations (commit, branch, diff) → git
  • GitHub (PR, issue, workflow) → github
  • Container (docker run, logs) → docker
  • System monitoring (CPU, memory) → resource
  • File operations (read, search) → file
  • Network (ping, port check) → network

Step 2: Search Within Category

// Use mcp_search_tools with category filter
miyabi:mcp_search_tools({
  category: "docker",
  query: "logs"  // optional refinement
})

Step 3: Get Full Tool Info

// Only load full schema when needed
miyabi:mcp_get_tool_info({
  tool: "docker_logs"
})

Implementation Patterns

Pattern 1: Intent-Based Routing

## User says: "Check container logs for errors"

1. Parse: container + logs → category: docker
2. Search: mcp_search_tools(category: "docker", query: "logs")
3. Result: docker_logs tool
4. Load: mcp_get_tool_info("docker_logs")
5. Execute: docker_logs(container: "x", tail: 100)

Pattern 2: Multi-Category Workflow

## User says: "Deploy and verify"

1. Parse: deploy → docker/compose, verify → health/network
2. Workflow:
   a. compose_up (compose category)
   b. network_port_check (network category)
   c. docker_logs (docker category)
   d. health_check (health category)

Pattern 3: Fallback Search

## When category unclear:

1. Use broad search: mcp_search_tools(query: "user's keywords")
2. Review results
3. Narrow if needed

Best Practices

DO:

  • ✅ Start with category identification
  • ✅ Use mcp_search_tools before loading full schemas
  • ✅ Cache frequently used tool info in conversation
  • ✅ Combine related tools in single workflow

DON'T:

  • ❌ Load all 172 tool definitions upfront
  • ❌ Guess tool names without searching
  • ❌ Repeat tool info lookups in same conversation
  • ❌ Use broad search when category is known

Tool Discovery Commands

List All Categories

miyabi:mcp_list_categories()

Search Tools

miyabi:mcp_search_tools({
  category: "git",      // optional filter
  query: "branch"       // optional keyword
})

Get Tool Details

miyabi:mcp_get_tool_info({
  tool: "git_branch_list"
})

Context Budget Guidelines

Scenario Token Budget Strategy
Simple task ~500 Direct tool call
Multi-step ~1000 Category + 2-3 tools
Complex workflow ~2000 Full tool chain
Exploration ~300 Category list only

Integration with Other Skills

With full-dev-cycle Skill

1. mcp-context-optimizer identifies tools
2. full-dev-cycle executes workflow
3. Progressive loading throughout

With miyabi-agent-orchestration

1. Lead agent uses optimizer for tool selection
2. Sub-agents receive only needed tool schemas
3. Reduced context per agent

Troubleshooting

"Can't find the right tool"

  1. Check category mapping above
  2. Try broader search query
  3. List all tools in suspected category

"Context too large"

  1. Use mcp_list_categories first (lowest token cost)
  2. Filter by category before detailed search
  3. Don't request tool info until needed

"Tool doesn't exist"

  1. Verify category with mcp_list_categories
  2. Search without typos
  3. Check if tool is platform-specific (linux/windows)

Metrics for Success

  • Token Reduction: 60-80% vs loading all tools
  • Accuracy: Higher tool selection accuracy
  • Speed: Faster response with targeted loading
  • Scalability: Works with 100+ tools

Future Enhancements

  • Auto-categorization from natural language
  • Tool usage frequency caching
  • Cross-category tool suggestions
  • Workflow template library