| name | pydantic |
| description | Data validation and settings management using Python type annotations with Pydantic v2 |
| when_to_use | When you need to validate data structures, create settings models, serialize/deserialize data, or ensure type safety in Python applications |
Pydantic v2 Framework Skill
Pydantic is a data validation library that uses Python type annotations to define data schemas, offering fast and extensible validation with automatic type coercion.
Quick Start
Basic Model Definition
from pydantic import BaseModel
from datetime import datetime
from typing import Optional
class User(BaseModel):
id: int
name: str
email: str
signup_ts: Optional[datetime] = None
is_active: bool = True
# Automatic type coercion
user = User(
id='123', # String → int
name='John Doe',
email='john@example.com',
signup_ts='2017-06-01 12:22' # String → datetime
)
Validation from Data Sources
# From dict
user = User.model_validate({'id': 1, 'name': 'Alice', 'email': 'alice@test.com'})
# From JSON
user = User.model_validate_json('{"id": 1, "name": "Alice", "email": "alice@test.com"}')
# Serialization
print(user.model_dump()) # Python dict
print(user.model_dump_json()) # JSON string
Common Patterns
Field Configuration
from pydantic import BaseModel, Field, EmailStr, HttpUrl
from typing import Annotated
class Product(BaseModel):
product_id: int = Field(alias='id', ge=1, description='Unique product identifier')
name: str = Field(min_length=1, max_length=200)
price: float = Field(gt=0, le=1000000)
email: EmailStr
website: HttpUrl
tags: list[str] = Field(default_factory=list, max_length=10)
internal_code: str = Field(exclude=True, default='N/A')
class User(BaseModel):
username: Annotated[str, Field(min_length=3, pattern=r'^[a-zA-Z0-9_]+$')]
age: int = Field(ge=0, le=150)
Model Configuration
from pydantic import BaseModel, ConfigDict
class StrictModel(BaseModel):
model_config = ConfigDict(
strict=True, # No type coercion
frozen=True, # Immutable instances
validate_assignment=True, # Validate on attribute assignment
extra='forbid', # Reject extra fields
str_strip_whitespace=True,
populate_by_name=True, # Accept both alias and field name
use_enum_values=True, # Serialize enums as values
)
id: int
name: str
Custom Validation
from pydantic import BaseModel, model_validator, field_validator, ValidationError
from typing import Any
class DateRange(BaseModel):
start_date: str
end_date: str
@field_validator('start_date', 'end_date')
@classmethod
def validate_date_format(cls, v: str) -> str:
# Custom validation logic
if not v:
raise ValueError('Date cannot be empty')
return v
@model_validator(mode='after')
def check_dates_order(self) -> 'DateRange':
# Cross-field validation
if self.start_date > self.end_date:
raise ValueError('start_date must be before end_date')
return self
# Using the model
try:
date_range = DateRange(start_date='2024-01-01', end_date='2024-01-31')
except ValidationError as e:
for error in e.errors():
print(f"{error['loc']}: {error['msg']}")
Serialization Control
from pydantic import BaseModel, Field, SecretStr
from datetime import datetime
class User(BaseModel):
id: int
username: str
password: SecretStr
created_at: datetime
internal_data: dict = Field(exclude=True, default_factory=dict)
# Serialization options
user = User(
id=1,
username='john',
password='secret',
created_at=datetime.now()
)
# Basic serialization
print(user.model_dump()) # Python dict
print(user.model_dump_json()) # JSON string
# Excluding fields
print(user.model_dump(exclude={'password'}))
print(user.model_dump(exclude={'username', 'created_at'}))
# Include only specific fields
print(user.model_dump(include={'id', 'username'}))
# JSON-compatible serialization
print(user.model_dump(mode='json')) # datetime → string
print(user.model_dump(by_alias=True)) # Use field aliases
Custom Serialization
from typing import Annotated, Any
from pydantic import BaseModel, field_serializer, PlainSerializer
class Model(BaseModel):
number: int
created_at: datetime
@field_serializer('number')
def serialize_number(self, value: int) -> str:
return f"{value:,}" # Format with commas
# Using Annotated with PlainSerializer
custom_field: Annotated[
float,
PlainSerializer(lambda x: round(x, 2), return_type=float)
]
Nested Models and Relationships
from pydantic import BaseModel
from typing import Optional, List
class Address(BaseModel):
street: str
city: str
country: str = 'USA'
zip_code: str
class User(BaseModel):
id: int
name: str
addresses: List[Address]
primary_address: Optional[Address] = None
# Usage
user = User(
id=1,
name='John Doe',
addresses=[
{'street': '123 Main St', 'city': 'New York', 'zip_code': '10001'},
{'street': '456 Oak Ave', 'city': 'Boston', 'zip_code': '02101'}
],
primary_address={'street': '123 Main St', 'city': 'New York', 'zip_code': '10001'}
)
Enum Integration
from enum import Enum, IntEnum
from pydantic import BaseModel
class Status(str, Enum):
PENDING = 'pending'
ACTIVE = 'active'
COMPLETED = 'completed'
class Priority(IntEnum):
LOW = 1
MEDIUM = 2
HIGH = 3
class Task(BaseModel):
title: str
status: Status = Status.PENDING
priority: Priority = Priority.MEDIUM
model_config = ConfigDict(use_enum_values=True)
# Can use enum values or names
task1 = Task(title='Task 1', status='active', priority=3)
task2 = Task(title='Task 2', status=Status.ACTIVE, priority=Priority.HIGH)
TypeAdapter for Standalone Validation
from pydantic import TypeAdapter
from typing import List, Optional
# Validate individual types without full models
int_adapter = TypeAdapter(int)
print(int_adapter.validate_python('123')) # 123
list_adapter = TypeAdapter(List[int])
print(list_adapter.validate_python(['1', '2', '3'])) # [1, 2, 3]
# Generate JSON schemas
print(int_adapter.json_schema())
print(list_adapter.json_schema())
Data Validation Patterns
from pydantic import BaseModel, ValidationError
from typing import Union
class EmailValidator(BaseModel):
email: str
@field_validator('email')
@classmethod
def validate_email(cls, v: str) -> str:
if '@' not in v:
raise ValueError('Invalid email format')
return v.lower()
# Validation error handling
try:
user = User(id='invalid', name='', email='test')
except ValidationError as e:
print(f"Errors: {e.error_count()}")
for error in e.errors():
print(f" {error['loc']}: {error['msg']} ({error['type']})")
Requirements
- Python 3.8+
- Pydantic v2.x:
pip install pydantic - Optional dependencies for enhanced types:
pip install pydantic[email]for EmailStrpip install pydantic[url]for HttpUrlpip install pydantic[typing-extensions]for extended type support
Best Practices
- Use specific types: Prefer
conint(gt=0)overintfor positive numbers - Configure models: Use
ConfigDictto set global model behavior - Handle validation errors: Always wrap model creation in try/catch blocks
- Use field validators: Implement custom validation logic with
@field_validator - Control serialization: Use
model_dump()parameters to control output format - Leverage type coercion: Pydantic automatically converts compatible types
- Use nested models: Break complex data into smaller, reusable models