Claude Code Plugins

Community-maintained marketplace

Feedback

Convex Agents Human Agents

@Sstobo/convex-skills
4
0

Integrates human agents into automated workflows for human-in-the-loop interactions. Use this when humans need to respond alongside AI agents, handle escalations, or provide context that AI cannot determine.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Convex Agents Human Agents
description Integrates human agents into automated workflows for human-in-the-loop interactions. Use this when humans need to respond alongside AI agents, handle escalations, or provide context that AI cannot determine.

Purpose

Human agents allow humans to participate in agent threads, creating hybrid workflows where humans and AI collaborate. Perfect for support, approval workflows, and escalations.

When to Use This Skill

  • Customer support with escalation to humans
  • Approval workflows where humans verify AI decisions
  • Human-AI collaboration (e.g., brainstorming)
  • Workflows needing human context or judgment
  • Handling exceptions AI can't resolve
  • Collecting human feedback for continuous improvement

How to Use It

1. Save a User Message

Store a message from the end user:

// convex/humanAgents.ts
import { mutation } from "./_generated/server";
import { v } from "convex/values";
import { saveMessage } from "@convex-dev/agent";
import { components } from "./_generated/api";

export const saveUserMessage = mutation({
  args: { threadId: v.string(), message: v.string() },
  handler: async (ctx, { threadId, message }) => {
    const { messageId } = await saveMessage(ctx, components.agent, {
      threadId,
      prompt: message, // User message without agent generation
    });

    return { messageId };
  },
});

2. Save Human Agent Response

Store a message from a human (e.g., support agent):

// convex/humanAgents.ts
import { mutation } from "./_generated/server";
import { v } from "convex/values";
import { saveMessage } from "./_generated/api";
import { components } from "./_generated/api";

export const saveHumanResponse = mutation({
  args: {
    threadId: v.string(),
    humanName: v.string(),
    response: v.string(),
  },
  handler: async (ctx, { threadId, humanName, response }) => {
    const { messageId } = await saveMessage(ctx, components.agent, {
      threadId,
      agentName: humanName, // Human's name as the "agent"
      message: {
        role: "assistant",
        content: response,
      },
      metadata: {
        provider: "human",
        providerMetadata: {
          human: { name: humanName },
        },
      },
    });

    return { messageId };
  },
});

3. Decide Who Responds Next

Route to AI or human:

// convex/humanAgents.ts
import { action } from "./_generated/server";
import { v } from "convex/values";
import { myAgent } from "./agents/myAgent";

export const routeResponse = action({
  args: { threadId: v.string(), userId: v.string(), question: v.string() },
  handler: async (ctx, { threadId, userId, question }) => {
    // Strategy 1: Check database for assigned responder
    const assignment = await ctx.db
      .query("threadAssignments")
      .filter((a) => a.threadId === threadId)
      .first();

    if (assignment?.assignedTo === "human") {
      return { responder: "human", requiresApproval: true };
    }

    // Strategy 2: Use fast LLM to classify
    const classification = await myAgent.generateText(
      ctx,
      { threadId },
      {
        prompt: `Should a human or AI respond? Question: ${question}`,
      }
    );

    if (classification.text.includes("human")) {
      return { responder: "human", reason: classification.text };
    }

    // Strategy 3: Use AI to respond
    return { responder: "ai" };
  },
});

4. Tool-Based Human Routing

Let AI call a tool to request human intervention:

// convex/humanAgents.ts
import { tool } from "ai";
import { z } from "zod";
import { action } from "./_generated/server";
import { v } from "convex/values";
import { myAgent } from "./agents/myAgent";

const askHumanTool = tool({
  description: "Ask a human agent for help",
  parameters: z.object({
    question: z.string().describe("Question for the human"),
  }),
});

export const generateWithHumanTool = action({
  args: { threadId: v.string(), prompt: v.string() },
  handler: async (ctx, { threadId, prompt }) => {
    const result = await myAgent.generateText(
      ctx,
      { threadId },
      {
        prompt,
        tools: { askHuman: askHumanTool },
        maxSteps: 5,
      }
    );

    // Check if AI asked for human help
    const humanRequests = result.toolCalls.filter(
      (tc) => tc.toolName === "askHuman"
    );

    if (humanRequests.length > 0) {
      // Notify human team
      await ctx.runMutation(internal.humanAgents.notifyHumanTeam, {
        threadId,
        requests: humanRequests,
      });
    }

    return result;
  },
});

5. Human Response to Tool Call

AI requested human help via tool; human now responds:

// convex/humanAgents.ts
import { internalAction } from "./_generated/server";
import { v } from "convex/values";
import { saveMessage } from "@convex-dev/agent";
import { components } from "./_generated/api";
import { myAgent } from "./agents/myAgent";

export const humanRespondToToolCall = internalAction({
  args: {
    threadId: v.string(),
    messageId: v.string(),
    toolCallId: v.string(),
    humanName: v.string(),
    response: v.string(),
  },
  handler: async (
    ctx,
    { threadId, messageId, toolCallId, humanName, response }
  ) => {
    // Save human response as tool result
    await saveMessage(ctx, components.agent, {
      threadId,
      message: {
        role: "tool",
        content: [
          {
            type: "tool-result",
            toolName: "askHuman",
            toolCallId,
            result: response,
          },
        ],
      },
      metadata: {
        provider: "human",
        providerMetadata: { human: { name: humanName } },
      },
    });

    // Continue AI generation with human's response
    const { thread } = await myAgent.continueThread(ctx, { threadId });
    await thread.generateText({ promptMessageId: messageId });
  },
});

6. Track Assignment

Store who should respond to a thread:

// convex/humanAgents.ts
import { mutation } from "./_generated/server";
import { v } from "convex/values";

export const assignThread = mutation({
  args: {
    threadId: v.string(),
    assignedTo: v.union(v.literal("ai"), v.literal("human")),
    assignedUser: v.optional(v.string()),
  },
  handler: async (ctx, { threadId, assignedTo, assignedUser }) => {
    await ctx.db.insert("threadAssignments", {
      threadId,
      assignedTo,
      assignedUser,
      assignedAt: Date.now(),
    });
  },
});

7. Implement Approval Workflow

AI generates response; human approves before sending:

// convex/humanAgents.ts
import { action, mutation } from "./_generated/server";
import { v } from "convex/values";
import { saveMessage } from "@convex-dev/agent";
import { components } from "./_generated/api";
import { myAgent } from "./agents/myAgent";

// Step 1: Generate AI response (pending approval)
export const generateForApproval = action({
  args: { threadId: v.string(), prompt: v.string() },
  handler: async (ctx, { threadId, prompt }) => {
    const { thread } = await myAgent.continueThread(ctx, { threadId });
    const result = await thread.generateText({ prompt });

    // Save as draft (not yet visible to user)
    const { messageId } = await saveMessage(ctx, components.agent, {
      threadId,
      message: { role: "assistant", content: result.text },
      metadata: { status: "pending_approval" },
    });

    // Notify human reviewer
    await ctx.runMutation(internal.humanAgents.notifyForApproval, {
      threadId,
      messageId,
      draftText: result.text,
    });

    return { messageId, draftText: result.text };
  },
});

// Step 2: Human approves or rejects
export const approveOrRejectResponse = mutation({
  args: {
    messageId: v.string(),
    approved: v.boolean(),
    review: v.optional(v.string()),
  },
  handler: async (ctx, { messageId, approved, review }) => {
    // Update message metadata
    const message = await ctx.db.get(messageId);
    if (message) {
      await ctx.db.patch(messageId, {
        metadata: {
          ...message.metadata,
          status: approved ? "approved" : "rejected",
          review,
        },
      });
    }
  },
});

8. Escalation System

Escalate to human when AI confidence is low:

// convex/humanAgents.ts
import { action } from "./_generated/server";
import { v } from "convex/values";
import { z } from "zod";
import { myAgent } from "./agents/myAgent";

export const generateWithConfidence = action({
  args: { threadId: v.string(), prompt: v.string() },
  handler: async (ctx, { threadId, prompt }) => {
    const result = await myAgent.generateObject(
      ctx,
      { threadId },
      {
        prompt,
        schema: z.object({
          response: z.string(),
          confidence: z.number().min(0).max(1),
          requiresHuman: z.boolean(),
        }),
      }
    );

    const { response, confidence, requiresHuman } = result.object;

    if (requiresHuman || confidence < 0.7) {
      // Escalate to human
      await ctx.runMutation(internal.humanAgents.escalateToHuman, {
        threadId,
        reason: `AI confidence: ${confidence}`,
        aiSuggestion: response,
      });
      return { escalated: true };
    }

    return { response, confidence };
  },
});

Key Principles

  • Hybrid workflows: Combine AI efficiency with human judgment
  • Tool-based escalation: AI can request human help via tools
  • Approval gates: Route sensitive responses through humans
  • Metadata tracking: Mark messages as human-provided
  • Assignment tracking: Know who should respond next
  • Graceful fallback: Fall back to human when AI is uncertain

Example: Support Chat with Escalation

// convex/support.ts
import { mutation, action, query } from "./_generated/server";
import { v } from "convex/values";
import { saveMessage } from "@convex-dev/agent";
import { components } from "./_generated/api";
import { supportAgent } from "./agents";
import { z } from "zod";
import { tool } from "ai";

const escalateTool = tool({
  description: "Escalate to human support",
  parameters: z.object({
    reason: z.string(),
  }),
});

// User sends message
export const sendSupportMessage = mutation({
  args: { threadId: v.string(), message: v.string() },
  handler: async (ctx, { threadId, message }) => {
    const { messageId } = await saveMessage(ctx, components.agent, {
      threadId,
      prompt: message,
    });
    return { messageId };
  },
});

// AI or human responds
export const respondToTicket = action({
  args: { threadId: v.string(), promptMessageId: v.string() },
  handler: async (ctx, { threadId, promptMessageId }) => {
    const result = await supportAgent.generateText(
      ctx,
      { threadId },
      {
        promptMessageId,
        tools: { escalate: escalateTool },
        maxSteps: 3,
      }
    );

    // Check if escalated
    if (result.toolCalls.some((tc) => tc.toolName === "escalate")) {
      await ctx.runMutation(internal.support.escalateTicket, { threadId });
    }
  },
});

// Human responds
export const humanReply = mutation({
  args: { threadId: v.string(), humanName: v.string(), reply: v.string() },
  handler: async (ctx, { threadId, humanName, reply }) => {
    await saveMessage(ctx, components.agent, {
      threadId,
      agentName: humanName,
      message: { role: "assistant", content: reply },
      metadata: { provider: "human" },
    });
  },
});

Common Patterns

  • First-touch by AI: Fast response for common issues
  • Escalation on uncertainty: Human for complex cases
  • Approval gate: Human reviews before sending
  • Hybrid reasoning: AI analyzes, human decides
  • Feedback loop: Humans improve AI over time

Next Steps

  • Add streaming: See Convex Agents Streaming for real-time human responses
  • Implement rate limiting: See Convex Agents Rate Limiting for limiting escalations
  • Track usage: See Convex Agents Usage Tracking for billing human labor

Troubleshooting

  • Too many escalations: Improve AI instructions or add more tools
  • Humans overwhelmed: Implement better routing or queue management
  • Lost context: Include thread history when notifying humans
  • Slow response times: Monitor human response time SLAs