| name | single-cell-cellphonedb-communication-mapping |
| title | Single-cell CellPhoneDB communication mapping |
| description | Run omicverse's CellPhoneDB v5 wrapper on annotated single-cell data to infer ligand-receptor networks and produce CellChat-style visualisations. |
Single-cell CellPhoneDB communication mapping
Overview
Apply this skill when a user wants to quantify ligand–receptor communication between annotated single-cell populations and display the networks with CellChatViz. It distils the workflow from t_cellphonedb.ipynb, which analyses EVT trophoblast data.
Instructions
- Prepare the environment
- Use an environment with
omicverse>=0.2,scanpy,anndata,pandas,matplotlib, andcellphonedbresources. The tutorial assumes the pre-built CellPhoneDB v5 SQLite bundle downloaded ascellphonedb.zipin the working directory. - Activate omicverse plotting defaults via
ov.plot_set()so that downstream figures follow the project palette.
- Use an environment with
- Load and subset the annotated AnnData object
- Read the normalised counts with
adata = ov.read('data/cpdb/normalised_log_counts.h5ad'). - Filter to the cell populations of interest using
adata.obs['cell_labels'](e.g., EVT, dNK, VCT). Ensureadata.obs['cell_labels']is categorical and free of missing values so CellPhoneDB groups cells correctly. - Confirm values are log-normalised (
adata.X.max()should be <10 and non-integer); raw counts inflate CellPhoneDB permutations.
- Read the normalised counts with
- Run CellPhoneDB via omicverse
- Execute
ov.single.run_cellphonedb_v5with the curated AnnData and metadata column:cpdb_results, adata_cpdb = ov.single.run_cellphonedb_v5( adata, cpdb_file_path='./cellphonedb.zip', celltype_key='cell_labels', min_cell_fraction=0.005, min_genes=200, min_cells=3, iterations=1000, threshold=0.1, pvalue=0.05, threads=10, output_dir='./cpdb_results', cleanup_temp=True, ) - Persist the outputs for reuse (
ov.utils.save(cpdb_results, ...),adata_cpdb.write(...)). Saving avoids recomputing permutations.
- Execute
- Initialise CellChat-style visualisation
- Create a colour dictionary that maps ordered
cell_labelscategories toadata.uns['cell_labels_colors']from previous plots. - Instantiate the viewer:
viz = ov.pl.CellChatViz(adata_cpdb, palette=color_dict). Inspectadata_cpdbto ensure communication slots (uns/obsm) were populated.
- Create a colour dictionary that maps ordered
- Summarise global communication
- Derive aggregated counts/weights with
viz.compute_aggregated_network(pvalue_threshold=0.05, use_means=True). - Plot overall interaction strength and counts using
viz.netVisual_circle(...)with matching figure sizes and colormaps. - Generate outgoing/incoming per-celltype circles using
viz.netVisual_individual_circleandviz.netVisual_individual_circle_incomingto highlight senders versus receivers.
- Derive aggregated counts/weights with
- Interrogate specific pathways
- Compute pathway summaries:
pathway_comm = viz.compute_pathway_communication(method='mean', min_lr_pairs=2, min_expression=0.1). - Identify significant signalling routes with
viz.get_significant_pathways_v2(...), then plot selected pathways usingviz.netVisual_aggregate(..., layout='circle'),viz.netVisual_chord_cell(...), orviz.netVisual_heatmap_marsilea(...). - For ligand–receptor focus, call
viz.netVisual_chord_LR(...)orviz.netAnalysis_contribution(pathway)to surface dominant pairs.
- Compute pathway summaries:
- System-level visualisations
- Compose bubble summaries for multiple pathways with
viz.netVisual_bubble_marsilea(...), optionally restrictingsources_use/targets_use. - Display gene-level chords via
viz.netVisual_chord_gene(...)to inspect signalling directionality. - Evaluate signalling roles using
viz.netAnalysis_computeCentrality(),viz.netAnalysis_signalingRole_network_marsilea(...),viz.netAnalysis_signalingRole_scatter(...), andviz.netAnalysis_signalingRole_heatmap(...)for incoming/outgoing programmes.
- Compose bubble summaries for multiple pathways with
- Troubleshooting tips
- Metadata alignment: CellPhoneDB requires a categorical
celltype_key. If the column contains spaces, mixed casing, orNaN, clean it (adata.obs['cell_labels'] = adata.obs['cell_labels'].astype('category').cat.remove_unused_categories()). - Database bundle:
cpdb_file_pathmust point to a full CellPhoneDB v5 SQLite zip. If omicverse raisesFileNotFoundErroror missing receptor tables, re-download the bundle from the official release and ensure the zip is not corrupted. - Permutation failures: Low cell counts per group (<
min_cells) cause early termination. Increasemin_cell_fractionthresholds or merge sparse clusters before rerunning. - Palette mismatches: When colours render incorrectly, rebuild
color_dictfromadata.uns['cell_labels_colors']after sorting categories to keep nodes and legends consistent.
- Metadata alignment: CellPhoneDB requires a categorical
Examples
- "Run CellPhoneDB on our trophoblast dataset and export both the cpdb results pickle and processed AnnData."
- "Highlight significant 'Signaling by Fibroblast growth factor' interactions with chord and bubble plots."
- "Generate outgoing versus incoming communication circles to compare dNK subsets."
References
- Tutorial notebook:
t_cellphonedb.ipynb - Example data:
omicverse_guide/docs/Tutorials-single/data/cpdb/ - Quick copy/paste commands:
reference.md