| name | single2spatial-spatial-mapping |
| title | Single2Spatial spatial mapping |
| description | Map scRNA-seq atlases onto spatial transcriptomics slides using omicverse's Single2Spatial workflow for deep-forest training, spot-level assessment, and marker visualisation. |
Single2Spatial spatial mapping
Overview
Apply this skill when converting single-cell references into spatially resolved profiles. It follows t_single2spatial.ipynb, demonstrating how Single2Spatial trains on PDAC scRNA-seq and Visium data, reconstructs spot-level proportions, and visualises marker expression.
Instructions
- Import dependencies and style
- Load
omicverse as ov,scanpy as sc,anndata,pandas as pd,numpy as np, andmatplotlib.pyplot as plt. - Call
ov.utils.ov_plot_set()(orov.plot_set()in older versions) to align plots with omicverse styling.
- Load
- Load single-cell and spatial datasets
- Read processed matrices with
pd.read_csv(...)then create AnnData objects (anndata.AnnData(raw_df.T)). - Attach metadata:
single_data.obs = pd.read_csv(...)[['Cell_type']]andspatial_data.obs = pd.read_csv(... )containing coordinates and slide metadata.
- Read processed matrices with
- Initialise Single2Spatial
- Instantiate
ov.bulk2single.Single2Spatial(single_data=single_data, spatial_data=spatial_data, celltype_key='Cell_type', spot_key=['xcoord','ycoord'], gpu=0). - Note that inputs should be normalised/log-scaled scRNA-seq matrices; ensure
spot_keymatches spatial coordinate columns.
- Instantiate
- Train the deep-forest model
- Execute
st_model.train(spot_num=500, cell_num=10, df_save_dir='...', df_save_name='pdac_df', k=10, num_epochs=1000, batch_size=1000, predicted_size=32)to fit the mapper and generate reconstructed spatial AnnData (sp_adata). - Explain that
spot_numdefines sampled pseudo-spots per iteration andcell_numcontrols per-spot cell draws.
- Execute
- Load pretrained weights
- Use
st_model.load(modelsize=14478, df_load_dir='.../pdac_df.pth', k=10, predicted_size=32)when checkpoints already exist to skip training.
- Use
- Assess spot-level outputs
- Call
st_model.spot_assess()to compute aggregated spot AnnData (sp_adata_spot) for QC. - Plot marker genes with
sc.pl.embedding(sp_adata, basis='X_spatial', color=['REG1A', 'CLDN1', ...], frameon=False, ncols=4).
- Call
- Visualise proportions and cell-type maps
- Use
sc.pl.embedding(sp_adata_spot, basis='X_spatial', color=['Acinar cells', ...], frameon=False)to highlight per-spot cell fractions. - Plot
sp_adatacoloured byCell_typewithpalette=ov.utils.ov_palette()[11:]to show reconstructed assignments.
- Use
- Export results
- Encourage saving generated AnnData objects (
sp_adata.write_h5ad(...),sp_adata_spot.write_h5ad(...)) and derived CSV summaries for downstream reporting.
- Encourage saving generated AnnData objects (
- Troubleshooting tips
- If training diverges, reduce
learning_ratevia keyword arguments or decreasepredicted_sizeto stabilise the forest. - Ensure scRNA-seq inputs are log-normalised; raw counts can lead to scale mismatches and poor spatial predictions.
- Verify GPU availability when
gpuis non-zero; fallback to CPU by omitting the argument or settinggpu=-1.
- If training diverges, reduce
Examples
- "Train Single2Spatial on PDAC scRNA-seq and Visium slides, then visualise REG1A and CLDN1 spatial expression."
- "Load a saved Single2Spatial checkpoint to regenerate spot-level cell-type proportions for reporting."
- "Plot reconstructed cell-type maps with omicverse palettes to compare against histology."
References
- Tutorial notebook:
t_single2spatial.ipynb - Example datasets and models:
omicverse_guide/docs/Tutorials-bulk2single/data/pdac/ - Quick copy/paste commands:
reference.md