Claude Code Plugins

Community-maintained marketplace

Feedback

Complete guide for calling AI models with CloudBase - covers JS/Node SDK and WeChat Mini Program. Text generation, streaming, and image generation.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ai-model-cloudbase
description Complete guide for calling AI models with CloudBase - covers JS/Node SDK and WeChat Mini Program. Text generation, streaming, and image generation.
alwaysApply false

When to use this skill

Use this skill for calling AI models using CloudBase across all platforms.

Supported platforms:

Platform SDK/API Section
Web (Browser) @cloudbase/js-sdk Part 1
Node.js (Server/Cloud Functions) @cloudbase/node-sdk ≥3.16.0 Part 1 (same API, different init)
Any platform (HTTP) HTTP API / OpenAI SDK Part 2
WeChat Mini Program wx.cloud.extend.AI Part 3 ⚠️ Different API

How to use this skill (for a coding agent)

  1. Identify the target platform - Ask user which platform they're developing for
  2. Confirm CloudBase environment - Get env (environment ID) and credentials
  3. Pick the appropriate section - Part 1 for JS/Node SDK, Part 3 for WeChat Mini Program
  4. Follow CloudBase API shapes exactly - Do not invent new APIs

Part 1: CloudBase JS SDK & Node SDK

JS SDK and Node SDK share the same AI API. Only initialization differs.

Installation

# For Web (Browser)
npm install @cloudbase/js-sdk

# For Node.js (Server/Cloud Functions)
npm install @cloudbase/node-sdk

⚠️ Node SDK AI feature requires version 3.16.0 or above. Check your version with npm list @cloudbase/node-sdk.

Initialization - Web (JS SDK)

import cloudbase from "@cloudbase/js-sdk";

const app = cloudbase.init({
  env: "<YOUR_ENV_ID>",
  accessKey: "<YOUR_PUBLISHABLE_KEY>"  // Get from CloudBase console
});

const auth = app.auth();
await auth.signInAnonymously();

const ai = app.ai();

Initialization - Node.js (Node SDK)

const tcb = require('@cloudbase/node-sdk');
const app = tcb.init({ env: '<YOUR_ENV_ID>' });

exports.main = async (event, context) => {
  const ai = app.ai();
  // Use AI features - same API as JS SDK
};

generateText() - Non-streaming

const model = ai.createModel("hunyuan-exp");

const result = await model.generateText({
  model: "hunyuan-lite",
  messages: [{ role: "user", content: "你好,请你介绍一下李白" }],
});

console.log(result.text);           // Generated text string
console.log(result.usage);          // { prompt_tokens, completion_tokens, total_tokens }
console.log(result.messages);       // Full message history
console.log(result.rawResponses);   // Raw model responses

streamText() - Streaming

const model = ai.createModel("hunyuan-exp");

const res = await model.streamText({
  model: "hunyuan-turbos-latest",
  messages: [{ role: "user", content: "你好,请你介绍一下李白" }],
});

// Option 1: Iterate text stream (recommended)
for await (let text of res.textStream) {
  console.log(text);  // Incremental text chunks
}

// Option 2: Iterate data stream for full response data
for await (let data of res.dataStream) {
  console.log(data);  // Full response chunk with metadata
}

// Option 3: Get final results
const messages = await res.messages;  // Full message history
const usage = await res.usage;        // Token usage

generateImage() - Image Generation

⚠️ Image generation is currently only available in Node SDK, not in JS SDK (Web) or WeChat Mini Program.

// Node SDK only
const imageModel = ai.createImageModel("hunyuan-image");

const res = await imageModel.generateImage({
  model: "hunyuan-image",
  prompt: "一只可爱的猫咪在草地上玩耍",
  size: "1024x1024",
  version: "v1.9",
});

console.log(res.data[0].url);           // Image URL (valid 24 hours)
console.log(res.data[0].revised_prompt);// Revised prompt if revise=true

Part 2: CloudBase HTTP API

API Endpoint

https://<ENV_ID>.api.tcloudbasegateway.com/v1/ai/<PROVIDER>/v1/chat/completions

cURL - Non-streaming

curl -X POST 'https://<ENV_ID>.api.tcloudbasegateway.com/v1/ai/deepseek/v1/chat/completions' \
  -H 'Authorization: Bearer <YOUR_API_KEY>' \
  -H 'Content-Type: application/json' \
  -d '{"model": "deepseek-r1", "messages": [{"role": "user", "content": "你好"}], "stream": false}'

cURL - Streaming

curl -X POST 'https://<ENV_ID>.api.tcloudbasegateway.com/v1/ai/deepseek/v1/chat/completions' \
  -H 'Authorization: Bearer <YOUR_API_KEY>' \
  -H 'Content-Type: application/json' \
  -H 'Accept: text/event-stream' \
  -d '{"model": "deepseek-r1", "messages": [{"role": "user", "content": "你好"}], "stream": true}'

OpenAI SDK Compatible

const OpenAI = require("openai");

const client = new OpenAI({
  apiKey: "<YOUR_API_KEY>",
  baseURL: "https://<ENV_ID>.api.tcloudbasegateway.com/v1/ai/deepseek/v1",
});

const completion = await client.chat.completions.create({
  model: "deepseek-r1",
  messages: [{ role: "user", content: "你好" }],
  stream: true,
});

for await (const chunk of completion) {
  console.log(chunk);
}

Part 3: WeChat Mini Program

⚠️ WeChat Mini Program API is DIFFERENT from JS/Node SDK. Pay attention to the parameter structure.

Requires base library 3.7.1+. No extra SDK needed.

Initialization

// app.js
App({
  onLaunch: function() {
    wx.cloud.init({ env: "<YOUR_ENV_ID>" });
  }
})

generateText() - Non-streaming

⚠️ Different from JS/Node SDK: Return value is raw model response.

const model = wx.cloud.extend.AI.createModel("hunyuan-exp");

const res = await model.generateText({
  model: "hunyuan-lite",
  messages: [{ role: "user", content: "你好" }],
});

// ⚠️ Return value is RAW model response, NOT wrapped like JS/Node SDK
console.log(res.choices[0].message.content);  // Access via choices array
console.log(res.usage);                        // Token usage

streamText() - Streaming

⚠️ Different from JS/Node SDK: Must wrap parameters in data object, supports callbacks.

const model = wx.cloud.extend.AI.createModel("hunyuan-exp");

// ⚠️ Parameters MUST be wrapped in `data` object
const res = await model.streamText({
  data: {                              // ⚠️ Required wrapper
    model: "hunyuan-lite",
    messages: [{ role: "user", content: "hi" }]
  },
  onText: (text) => {                  // Optional: incremental text callback
    console.log("New text:", text);
  },
  onEvent: ({ data }) => {             // Optional: raw event callback
    console.log("Event:", data);
  },
  onFinish: (fullText) => {            // Optional: completion callback
    console.log("Done:", fullText);
  }
});

// Async iteration also available
for await (let str of res.textStream) {
  console.log(str);
}

// Check for completion with eventStream
for await (let event of res.eventStream) {
  console.log(event);
  if (event.data === "[DONE]") {       // ⚠️ Check for [DONE] to stop
    break;
  }
}

API Comparison: JS/Node SDK vs WeChat Mini Program

Feature JS/Node SDK WeChat Mini Program
Namespace app.ai() wx.cloud.extend.AI
generateText params Direct object Direct object
generateText return { text, usage, messages } Raw: { choices, usage }
streamText params Direct object ⚠️ Wrapped in data: {...}
streamText return { textStream, dataStream } { textStream, eventStream }
Callbacks Not supported onText, onEvent, onFinish
Image generation Node SDK only Not available

Type Definitions

JS/Node SDK - BaseChatModelInput

interface BaseChatModelInput {
  model: string;                        // Required: model name
  messages: Array<ChatModelMessage>;    // Required: message array
  temperature?: number;                 // Optional: sampling temperature
  topP?: number;                        // Optional: nucleus sampling
}

type ChatModelMessage =
  | { role: "user"; content: string }
  | { role: "system"; content: string }
  | { role: "assistant"; content: string };

JS/Node SDK - generateText() Return

interface GenerateTextResult {
  text: string;                         // Generated text
  messages: Array<ChatModelMessage>;    // Full message history
  usage: Usage;                         // Token usage
  rawResponses: Array<unknown>;         // Raw model responses
  error?: unknown;                      // Error if any
}

interface Usage {
  prompt_tokens: number;
  completion_tokens: number;
  total_tokens: number;
}

JS/Node SDK - streamText() Return

interface StreamTextResult {
  textStream: AsyncIterable<string>;    // Incremental text stream
  dataStream: AsyncIterable<DataChunk>; // Full data stream
  messages: Promise<ChatModelMessage[]>;// Final message history
  usage: Promise<Usage>;                // Final token usage
  error?: unknown;                      // Error if any
}

interface DataChunk {
  choices: Array<{
    finish_reason: string;
    delta: ChatModelMessage;
  }>;
  usage: Usage;
  rawResponse: unknown;
}

WeChat Mini Program - streamText() Input

interface WxStreamTextInput {
  data: {                              // ⚠️ Required wrapper object
    model: string;
    messages: Array<{
      role: "user" | "system" | "assistant";
      content: string;
    }>;
  };
  onText?: (text: string) => void;     // Incremental text callback
  onEvent?: (prop: { data: string }) => void;  // Raw event callback
  onFinish?: (text: string) => void;   // Completion callback
}

WeChat Mini Program - streamText() Return

interface WxStreamTextResult {
  textStream: AsyncIterable<string>;   // Incremental text stream
  eventStream: AsyncIterable<{         // Raw event stream
    event?: unknown;
    id?: unknown;
    data: string;                      // "[DONE]" when complete
  }>;
}

WeChat Mini Program - generateText() Return

// Raw model response (OpenAI-compatible format)
interface WxGenerateTextResponse {
  id: string;
  object: "chat.completion";
  created: number;
  model: string;
  choices: Array<{
    index: number;
    message: {
      role: "assistant";
      content: string;
    };
    finish_reason: string;
  }>;
  usage: {
    prompt_tokens: number;
    completion_tokens: number;
    total_tokens: number;
  };
}

HunyuanGenerateImageInput (JS/Node SDK only)

interface HunyuanGenerateImageInput {
  model: "hunyuan-image" | string;      // Required
  prompt: string;                       // Required: image description
  version?: "v1.8.1" | "v1.9";         // Default: "v1.8.1"
  size?: string;                        // Default: "1024x1024"
  negative_prompt?: string;             // v1.9 only
  style?: string;                       // v1.9 only
  revise?: boolean;                     // Default: true
  n?: number;                           // Default: 1
  footnote?: string;                    // Watermark, max 16 chars
  seed?: number;                        // Range: [1, 4294967295]
}

interface HunyuanGenerateImageOutput {
  id: string;
  created: number;
  data: Array<{
    url: string;                        // Image URL (24h valid)
    revised_prompt?: string;
  }>;
}

Best Practices

  1. Use streaming for long responses - Better user experience
  2. Handle errors gracefully - Wrap AI calls in try/catch
  3. Keep API Keys secure - Never expose in client-side code
  4. Initialize early - Initialize SDK/cloud in app entry point
  5. Check for [DONE] - In WeChat Mini Program streaming, check event.data === "[DONE]" to stop