Claude Code Plugins

Community-maintained marketplace

Feedback

Search technical documentation using executable scripts to detect query type, fetch from llms.txt sources (context7.com), and analyze results. Use when user needs: (1) Topic-specific documentation (features/components/concepts), (2) Library/framework documentation, (3) GitHub repository analysis, (4) Documentation discovery with automated agent distribution strategy

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name docs-seeker
description Search technical documentation using executable scripts to detect query type, fetch from llms.txt sources (context7.com), and analyze results. Use when user needs: (1) Topic-specific documentation (features/components/concepts), (2) Library/framework documentation, (3) GitHub repository analysis, (4) Documentation discovery with automated agent distribution strategy
version 3.1.0

Documentation Discovery via Scripts

Overview

Script-first documentation discovery using llms.txt standard.

Execute scripts to handle entire workflow - no manual URL construction needed.

Primary Workflow

ALWAYS execute scripts in this order:

# 1. DETECT query type (topic-specific vs general)
node scripts/detect-topic.js "<user query>"

# 2. FETCH documentation using script output
node scripts/fetch-docs.js "<user query>"

# 3. ANALYZE results (if multiple URLs returned)
cat llms.txt | node scripts/analyze-llms-txt.js -

Scripts handle URL construction, fallback chains, and error handling automatically.

Scripts

detect-topic.js - Classify query type

  • Identifies topic-specific vs general queries
  • Extracts library name + topic keyword
  • Returns JSON: {topic, library, isTopicSpecific}
  • Zero-token execution

fetch-docs.js - Retrieve documentation

  • Constructs context7.com URLs automatically
  • Handles fallback: topic → general → error
  • Outputs llms.txt content or error message
  • Zero-token execution

analyze-llms-txt.js - Process llms.txt

  • Categorizes URLs (critical/important/supplementary)
  • Recommends agent distribution (1 agent, 3 agents, 7 agents, phased)
  • Returns JSON with strategy
  • Zero-token execution

Workflow References

Topic-Specific Search - Fastest path (10-15s)

General Library Search - Comprehensive coverage (30-60s)

Repository Analysis - Fallback strategy

References

context7-patterns.md - URL patterns, known repositories

errors.md - Error handling, fallback strategies

advanced.md - Edge cases, versioning, multi-language

Execution Principles

  1. Scripts first - Execute scripts instead of manual URL construction
  2. Zero-token overhead - Scripts run without context loading
  3. Automatic fallback - Scripts handle topic → general → error chains
  4. Progressive disclosure - Load workflows/references only when needed
  5. Agent distribution - Scripts recommend parallel agent strategy

Quick Start

Topic query: "How do I use date picker in shadcn?"

node scripts/detect-topic.js "<query>"  # → {topic, library, isTopicSpecific}
node scripts/fetch-docs.js "<query>"    # → 2-3 URLs
# Read URLs with WebFetch

General query: "Documentation for Next.js"

node scripts/detect-topic.js "<query>"         # → {isTopicSpecific: false}
node scripts/fetch-docs.js "<query>"           # → 8+ URLs
cat llms.txt | node scripts/analyze-llms-txt.js -  # → {totalUrls, distribution}
# Deploy agents per recommendation

Environment

Scripts load .env: process.env > .claude/skills/docs-seeker/.env > .claude/skills/.env > .claude/.env

See .env.example for configuration options.