| name | ds-star |
| description | Multi-agent data science framework using DS-STAR (Data Science - Structured Thought and Action) architecture. Automates data analysis through collaborative AI agents with multi-model support (Haiku, Sonnet, Opus). Use for exploratory data analysis, automated insights, and iterative data science workflows. |
| metadata | [object Object] |
DS-STAR: Multi-Agent Data Science Framework
Overview
DS-STAR (Data Science - Structured Thought and Action) is an intelligent multi-agent framework adapted for Claude Code that automates data science workflows through specialized AI agents. Originally designed for Google's Gemini models, this skill adapts DS-STAR to leverage Claude's model family (Haiku, Sonnet, Opus) for cost-efficient, high-quality data analysis.
What It Does
DS-STAR orchestrates seven specialized agents that work collaboratively to:
- Analyze data files (structured/unstructured)
- Plan analysis strategies iteratively
- Generate Python code to execute plans
- Execute code with automatic debugging
- Verify results against the query
- Route refinement decisions
- Finalize formatted outputs
Key Innovation: Multi-model optimization - route exploration tasks to Haiku, complex reasoning to Sonnet, and critical analysis to Opus for optimal cost/performance balance.
When to Use This Skill
- Exploratory Data Analysis (EDA): Automated insights from CSV, JSON, or text files
- Data Science Questions: Answer factual questions from data programmatically
- Iterative Analysis: Refine analyses through multiple rounds of verification
- Cost-Optimized Workflows: Use cheaper models for simple tasks, powerful models for complex reasoning
- Reproducible Research: All artifacts (prompts, code, results) are saved for audit trails
Performance Characteristics
| Agent | Default Model | Task Type | Cost Profile |
|---|---|---|---|
| Analyzer | Haiku | Data inspection | $0.80/1M tokens |
| Planner | Sonnet | Strategy design | $15/1M tokens |
| Coder | Sonnet | Code generation | $15/1M tokens |
| Verifier | Sonnet | Result validation | $15/1M tokens |
| Router | Haiku | Decision routing | $0.80/1M tokens |
| Debugger | Sonnet | Error fixing | $15/1M tokens |
| Finalyzer | Sonnet | Output formatting | $15/1M tokens |
Estimated Cost (typical analysis):
- Traditional (all Sonnet): ~$0.50-1.00
- DS-STAR (mixed models): ~$0.20-0.40
- Savings: 50-60%
How It Works
Multi-Agent Pipeline
┌─────────────────────────────────────────────────────────┐
│ 1. ANALYZER (Haiku) │
│ Input: Data files │
│ Output: Data descriptions, schemas, summaries │
└─────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────┐
│ 2. PLANNER (Sonnet) │
│ Input: Query + Data descriptions │
│ Output: Initial analysis step │
└─────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────┐
│ 3. CODER (Sonnet) │
│ Input: Plan + Data descriptions │
│ Output: Python code to execute plan │
└─────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────┐
│ 4. DEBUGGER (Sonnet) [If needed] │
│ Input: Code + Error │
│ Output: Fixed code │
└─────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────┐
│ 5. VERIFIER (Sonnet) │
│ Input: Code + Results + Query │
│ Output: "Sufficient" or "Needs refinement" │
└─────────────────────────────────────────────────────────┘
↓
┌─────────────┴─────────────┐
│ Sufficient? │
└─────────────┬─────────────┘
YES │ │ NO
│ └──────────────┐
│ ↓
│ ┌──────────────────────────────┐
│ │ 6. ROUTER (Haiku) │
│ │ Decide: Fix step or Add │
│ └──────────────────────────────┘
│ │
│ ↓
│ [Loop back to PLANNER]
│
↓
┌─────────────────────────────────────────────────────────┐
│ 7. FINALYZER (Sonnet) │
│ Input: Final code + Results + Query │
│ Output: Formatted answer (JSON/text) │
└─────────────────────────────────────────────────────────┘
Iterative Refinement
DS-STAR uses up to 5 refinement rounds (configurable):
- Each round can add a new analysis step or fix a previous step
- Automatic debugging retries failed code
- Verification gates ensure quality before finalization
- All artifacts saved in
runs/<run_id>/for reproducibility
Installation
Quick Start
# Add the marketplace (if not already added)
/plugin marketplace add token-eater/skills-marketplace
# Install DS-STAR skill
/plugin install ds-star
Manual Installation
# Clone the marketplace
git clone https://github.com/token-eater/skills-marketplace.git
cd skills-marketplace
# The skill is in skills/ds-star/
Usage
Basic Usage
# In Claude Code, invoke the skill
/skill ds-star
# The skill will prompt you for:
# 1. Data files (CSV, JSON, TXT, etc.)
# 2. Your analysis query
# 3. Model configuration (optional)
Example Queries
Basic Statistics:
Query: "What is the average age and gender distribution in this dataset?" Data: customers.csvTime Series Analysis:
Query: "What are the monthly sales trends over the past year?" Data: sales_2024.csvData Quality:
Query: "How many missing values are in each column, and what percentage of the total?" Data: survey_responses.csvCorrelation Analysis:
Query: "Which features have the strongest correlation with customer churn?" Data: customer_features.csv
Advanced Configuration
Configure which models to use for each agent:
# In your query, you can specify:
agent_models:
ANALYZER: haiku # Fast data inspection
PLANNER: sonnet # Strategic planning
CODER: sonnet # Code generation
VERIFIER: sonnet # Result validation
ROUTER: haiku # Simple routing decisions
DEBUGGER: opus # Complex debugging (if needed)
FINALYZER: sonnet # Output formatting
Or use presets:
- Fast (70% cost savings): All Haiku except Coder/Debugger
- Balanced (50% cost savings): Haiku for simple, Sonnet for complex
- Quality (Highest accuracy): All Sonnet or Opus
Output Structure
Every run creates a structured artifact directory:
runs/<run_id>/
├── steps/
│ ├── 001_analyzer/
│ │ ├── prompt.md # Agent prompt
│ │ ├── code.py # Generated code
│ │ ├── result.txt # Execution output
│ │ └── metadata.json # Step metadata
│ ├── 002_planner_init/
│ ├── 003_coder/
│ └── ...
├── exec_env/ # Executed scripts
├── logs/
│ ├── pipeline.log # Structured logs
│ └── execution.log # Code execution logs
├── final_output/
│ └── result.json # Final answer
└── pipeline_state.json # Resume state
Resume Support
DS-STAR supports resuming interrupted runs:
# Resume from a previous run ID
/skill ds-star --resume 20241123_143022_a1b2c3
Multi-Model Optimization
Cost Comparison (50K token analysis)
| Configuration | Input Cost | Output Cost | Total | Savings |
|---|---|---|---|---|
| All Sonnet | $0.75 | $0.75 | $1.50 | 0% |
| Balanced | $0.30 | $0.30 | $0.60 | 60% |
| Fast | $0.15 | $0.15 | $0.30 | 80% |
Model Selection Guidelines
Use Haiku for:
- Data file inspection (Analyzer)
- Simple routing decisions (Router)
- Basic extraction tasks
Use Sonnet for:
- Planning strategies (Planner)
- Code generation (Coder)
- Result verification (Verifier)
- Output formatting (Finalyzer)
Use Opus for:
- Complex debugging scenarios
- Critical analysis requiring highest accuracy
- Novel/ambiguous data formats
Examples
Example 1: Iris Dataset Analysis
Data: iris.csv (150 rows, 5 columns)
Query: "What is the average petal length for each species, and which species has the highest variance?"
Result:
{
"final_answer": {
"averages": {
"setosa": 1.46,
"versicolor": 4.26,
"virginica": 5.55
},
"highest_variance": "virginica",
"variance_value": 0.304
}
}
Cost: $0.18 (Balanced configuration) Time: ~25 seconds Steps: 3 (Analyze → Plan → Code → Verify → Finalize)
Example 2: Sales Data Time Series
Data: sales_2024.csv (365 rows, daily sales)
Query: "Identify the top 3 months by total sales and calculate month-over-month growth rates."
Result:
{
"final_answer": {
"top_3_months": [
{"month": "December", "total_sales": 125000, "growth": "+15%"},
{"month": "November", "total_sales": 108000, "growth": "+8%"},
{"month": "July", "total_sales": 95000, "growth": "+12%"}
],
"average_growth": "+8.3%"
}
}
Cost: $0.22 (Balanced configuration) Time: ~30 seconds Steps: 4 (with 1 refinement round)
Architecture
Claude Provider Implementation
The skill includes a custom ClaudeProvider that integrates with the Claude Agent SDK:
class ClaudeProvider(ModelProvider):
"""Provider for Claude models via Agent SDK."""
def __init__(self, model_name: str = "sonnet"):
self.model_name = model_name # haiku, sonnet, or opus
def generate_content(self, prompt: str) -> str:
# Use SDK's subagent system for context efficiency
# Automatically handles model routing
# Returns generated content
Integration with Claude Code
- Context Efficient: Uses subagents to avoid context bloat
- Parallel Execution: Independent agents can run concurrently
- Artifact Persistence: All outputs saved to project directory
- Resume Support: Can pause/resume long analyses
Troubleshooting
Common Issues
1. "Missing data files" error
- Ensure files are in the
data/directory - Use absolute paths or relative to project root
- Check file permissions
2. Code execution timeout
- Increase
execution_timeoutin config (default: 60s) - Simplify the query or split into multiple queries
- Check for infinite loops in generated code
3. "API key not found"
- Claude Agent SDK handles auth automatically
- No API keys needed for built-in Claude models
- External models (OpenAI, Gemini) require env vars
4. Verification always fails
- Query may be too ambiguous - make it more specific
- Increase
max_refinement_rounds(default: 5) - Check intermediate results in
runs/<id>/steps/
Debug Mode
Enable detailed logging:
# Run with interactive mode to pause at each step
/skill ds-star --interactive
# Or inspect artifacts manually
ls runs/<run_id>/steps/
cat runs/<run_id>/logs/pipeline.log
Configuration
Config Options
# config.yaml (optional, in project root)
run_id: "my_experiment" # Custom run ID
model_name: "sonnet" # Default model
interactive: false # Pause between steps
max_refinement_rounds: 5 # Max iterations
execution_timeout: 60 # Code timeout (seconds)
preserve_artifacts: true # Save all outputs
runs_dir: "runs" # Artifact directory
data_dir: "data" # Data file directory
# Agent-specific models
agent_models:
ANALYZER: haiku
PLANNER: sonnet
CODER: sonnet
VERIFIER: sonnet
ROUTER: haiku
DEBUGGER: opus
FINALYZER: sonnet
Comparison with Original
| Feature | Original DS-STAR | This Skill |
|---|---|---|
| Models | Gemini, OpenAI | Claude (Haiku/Sonnet/Opus) |
| Context | Full context per call | Subagent-optimized |
| Cost | $1-2 per analysis | $0.20-0.40 per analysis |
| Integration | Standalone CLI | Claude Code skill |
| Resume | ✅ Yes | ✅ Yes |
| Interactive | ✅ Yes | ✅ Yes |
| Artifacts | ✅ Saved | ✅ Saved |
| Multi-model | Basic | Advanced routing |
Best Practices
Query Design
✅ Good Queries:
- "Calculate the correlation between X and Y columns"
- "What percentage of users have more than 3 purchases?"
- "Identify outliers in the price column using IQR method"
❌ Avoid:
- "Tell me about this data" (too vague)
- "Do everything" (use multiple specific queries)
- Queries requiring external data not in files
Data Preparation
✅ Best Formats:
- CSV with headers
- JSON with consistent structure
- Clean text files (UTF-8)
❌ Problematic:
- Excel files with multiple sheets (convert to CSV first)
- PDFs (extract text first)
- Binary formats (images, etc.)
Model Selection
- Start with Balanced configuration (50% cost savings)
- Use Fast for large datasets (>100K rows)
- Use Quality (Opus) only for novel/complex analyses
- Override specific agents as needed (e.g., Opus for Debugger only)
Limitations
- Python-only execution: Generated code is Python (pandas, numpy, etc.)
- Local execution: Code runs locally (be cautious with untrusted data)
- No external APIs: Agents can't call external services (by design)
- Single-file outputs: Finalyzer produces one result file
- No interactive visualizations: Text/JSON outputs only (no plots saved)
Contributing
Extending the Framework
Want to add new agents or capabilities?
- Add new agent type in
scripts/dsstar.py - Create prompt template in
scripts/prompts.py - Wire up in pipeline in
run_pipeline()method - Test with sample data
- Submit PR with examples
Ideas for Extensions
- Visualization Agent: Generate matplotlib/seaborn plots
- Export Agent: Save results to various formats (Excel, PDF, etc.)
- Schema Agent: Automatically detect and validate data schemas
- Anomaly Agent: Specialized outlier detection
- ML Agent: Train simple models (regression, classification)
License
MIT License - Adapted from DS-Star by Jules Lescx.
Original DS-STAR based on Google Research paper.
Support & Resources
- 📖 Original Paper: DS-STAR: Domain Adaptive Data Science via Large Language Models
- 💾 Original Repository: github.com/JulesLscx/DS-Star
- 🐛 Report Issues: Skills Marketplace Issues
- 💬 Discussions: Skills Marketplace Discussions
Ready to automate your data science workflows? Install DS-STAR and let multi-agent AI handle the heavy lifting!