| name | pine-backtester |
| description | Implements comprehensive backtesting capabilities for Pine Script indicators and strategies. Use when adding performance metrics, trade analysis, equity curves, win rates, drawdown tracking, or statistical validation. Triggers on "backtest", "performance", "metrics", "win rate", "drawdown", or testing requests. |
Pine Script Backtester
Specialized in adding comprehensive testing and validation capabilities to Pine Script indicators and strategies.
Core Responsibilities
Strategy Performance Metrics
- Win rate and profit factor
- Maximum drawdown analysis
- Sharpe and Sortino ratios
- Risk-adjusted returns
- Trade distribution analysis
Indicator Accuracy Testing
- Signal accuracy measurements
- False positive/negative rates
- Lag analysis
- Divergence detection accuracy
- Multi-timeframe validation
Statistical Analysis
- Monte Carlo simulations
- Walk-forward analysis
- Confidence intervals
- Statistical significance tests
- Correlation analysis
Backtesting Components
1. Comprehensive Strategy Metrics Table
// Strategy Performance Metrics
var table metricsTable = table.new(position.bottom_right, 2, 15, bgcolor=color.new(color.black, 90))
if barstate.islastconfirmedhistory
wins = strategy.wintrades
losses = strategy.losstrades
totalTrades = wins + losses
winRate = totalTrades > 0 ? (wins / totalTrades) * 100 : 0
avgWin = strategy.grossprofit / math.max(wins, 1)
avgLoss = math.abs(strategy.grossloss) / math.max(losses, 1)
profitFactor = avgLoss > 0 ? avgWin / avgLoss : 0
// Drawdown calculation
var float maxEquity = strategy.initial_capital
var float maxDrawdown = 0.0
currentEquity = strategy.equity
if currentEquity > maxEquity
maxEquity := currentEquity
drawdown = ((maxEquity - currentEquity) / maxEquity) * 100
maxDrawdown := math.max(maxDrawdown, drawdown)
// Populate table
table.cell(metricsTable, 0, 0, "METRIC", bgcolor=color.gray, text_color=color.white)
table.cell(metricsTable, 1, 0, "VALUE", bgcolor=color.gray, text_color=color.white)
table.cell(metricsTable, 0, 1, "Total Trades", text_color=color.white)
table.cell(metricsTable, 1, 1, str.tostring(totalTrades), text_color=color.yellow)
table.cell(metricsTable, 0, 2, "Win Rate", text_color=color.white)
table.cell(metricsTable, 1, 2, str.tostring(winRate, "#.##") + "%", text_color=winRate > 50 ? color.green : color.red)
table.cell(metricsTable, 0, 3, "Profit Factor", text_color=color.white)
table.cell(metricsTable, 1, 3, str.tostring(profitFactor, "#.##"), text_color=profitFactor > 1 ? color.green : color.red)
table.cell(metricsTable, 0, 4, "Max Drawdown", text_color=color.white)
table.cell(metricsTable, 1, 4, str.tostring(maxDrawdown, "#.##") + "%", text_color=maxDrawdown < 20 ? color.green : color.red)
table.cell(metricsTable, 0, 5, "Net Profit", text_color=color.white)
netProfit = strategy.netprofit
table.cell(metricsTable, 1, 5, str.tostring(netProfit, "#,###.##"), text_color=netProfit > 0 ? color.green : color.red)
2. Trade Distribution Analysis
// Trade distribution tracking
var array<float> tradeReturns = array.new<float>()
var array<int> tradeDurations = array.new<int>()
var int tradeStartBar = 0
if strategy.position_size != strategy.position_size[1]
if strategy.position_size != 0
// Trade entry
tradeStartBar := bar_index
else
// Trade exit
tradeReturn = (strategy.equity - strategy.equity[bar_index - tradeStartBar]) / strategy.equity[bar_index - tradeStartBar] * 100
array.push(tradeReturns, tradeReturn)
array.push(tradeDurations, bar_index - tradeStartBar)
// Calculate distribution stats
if barstate.islastconfirmedhistory and array.size(tradeReturns) > 0
avgReturn = array.avg(tradeReturns)
stdReturn = array.stdev(tradeReturns)
medianReturn = array.median(tradeReturns)
maxReturn = array.max(tradeReturns)
minReturn = array.min(tradeReturns)
// Display distribution
table.cell(metricsTable, 0, 6, "Avg Return", text_color=color.white)
table.cell(metricsTable, 1, 6, str.tostring(avgReturn, "#.##") + "%", text_color=avgReturn > 0 ? color.green : color.red)
table.cell(metricsTable, 0, 7, "Std Dev", text_color=color.white)
table.cell(metricsTable, 1, 7, str.tostring(stdReturn, "#.##") + "%", text_color=color.yellow)
3. Sharpe Ratio Calculation
// Sharpe Ratio calculation
var array<float> returns = array.new<float>()
var float previousEquity = strategy.initial_capital
if bar_index > 0
currentReturn = (strategy.equity - previousEquity) / previousEquity
array.push(returns, currentReturn)
if array.size(returns) > 252 // Keep 1 year of daily returns
array.shift(returns)
previousEquity := strategy.equity
if barstate.islastconfirmedhistory and array.size(returns) > 30
avgReturn = array.avg(returns) * 252 // Annualized
stdReturn = array.stdev(returns) * math.sqrt(252) // Annualized
riskFreeRate = 0.02 // 2% risk-free rate
sharpeRatio = stdReturn > 0 ? (avgReturn - riskFreeRate) / stdReturn : 0
table.cell(metricsTable, 0, 8, "Sharpe Ratio", text_color=color.white)
table.cell(metricsTable, 1, 8, str.tostring(sharpeRatio, "#.##"), text_color=sharpeRatio > 1 ? color.green : sharpeRatio > 0 ? color.yellow : color.red)
4. Indicator Accuracy Testing
// For indicators: Track signal accuracy
var int truePositives = 0
var int falsePositives = 0
var int trueNegatives = 0
var int falseNegatives = 0
// Define what constitutes a successful signal (example: price moves 1% in signal direction)
targetMove = input.float(1.0, "Target Move %", group="Backtest Settings")
lookforward = input.int(10, "Bars to Confirm", group="Backtest Settings")
if barstate.isconfirmed and bar_index > lookforward
// Check if past signal was correct
if buySignal[lookforward]
priceChange = (close - close[lookforward]) / close[lookforward] * 100
if priceChange >= targetMove
truePositives += 1
else
falsePositives += 1
else if sellSignal[lookforward]
priceChange = (close[lookforward] - close) / close[lookforward] * 100
if priceChange >= targetMove
trueNegatives += 1
else
falseNegatives += 1
// Display accuracy metrics
if barstate.islastconfirmedhistory
accuracy = (truePositives + trueNegatives) / math.max(truePositives + trueNegatives + falsePositives + falseNegatives, 1) * 100
precision = truePositives / math.max(truePositives + falsePositives, 1) * 100
recall = truePositives / math.max(truePositives + falseNegatives, 1) * 100
table.cell(metricsTable, 0, 9, "Signal Accuracy", text_color=color.white)
table.cell(metricsTable, 1, 9, str.tostring(accuracy, "#.##") + "%", text_color=accuracy > 60 ? color.green : color.red)
5. Equity Curve Visualization
// Plot equity curve (for strategies)
plot(strategy.equity, "Equity Curve", color=color.blue, linewidth=2)
// Add drawdown visualization
equityMA = ta.sma(strategy.equity, 20)
plot(equityMA, "Equity MA", color=color.orange, linewidth=1)
// Underwater equity (drawdown visualization)
var float peakEquity = strategy.initial_capital
peakEquity := math.max(peakEquity, strategy.equity)
drawdownValue = (peakEquity - strategy.equity) / peakEquity * 100
// Plot drawdown as histogram
plot(drawdownValue, "Drawdown %", color=color.red, style=plot.style_histogram, histbase=0)
6. Multi-Timeframe Validation
// Test indicator on multiple timeframes
htf1_signal = request.security(syminfo.tickerid, "60", buySignal)
htf2_signal = request.security(syminfo.tickerid, "240", buySignal)
htf3_signal = request.security(syminfo.tickerid, "D", buySignal)
// Confluence scoring
confluenceScore = 0
confluenceScore += buySignal ? 1 : 0
confluenceScore += htf1_signal ? 1 : 0
confluenceScore += htf2_signal ? 1 : 0
confluenceScore += htf3_signal ? 1 : 0
// Track confluence performance
var array<float> confluenceReturns = array.new<float>()
if confluenceScore >= 3 and barstate.isconfirmed
// Track returns when high confluence
futureReturn = (close[10] - close) / close * 100 // 10-bar forward return
array.push(confluenceReturns, futureReturn)
7. Walk-Forward Analysis
// Simple walk-forward testing
lookbackPeriod = input.int(100, "Training Period", group="Walk-Forward")
forwardPeriod = input.int(20, "Testing Period", group="Walk-Forward")
// Optimize parameters on lookback period
var float optimalParam = na
if bar_index % (lookbackPeriod + forwardPeriod) == 0
// Re-optimize parameters based on past performance
// This is simplified - real implementation would test multiple values
optimalParam := ta.sma(close, lookbackPeriod) > close ? 20 : 50
// Use optimized parameters
maLength = int(optimalParam)
ma = ta.sma(close, maLength)
Testing Checklist
- Net profit/loss calculation
- Win rate and trade count
- Maximum drawdown tracking
- Risk-adjusted returns (Sharpe/Sortino)
- Trade distribution analysis
- Equity curve visualization
- Signal accuracy for indicators
- Multi-timeframe validation
- Statistical significance tests
- Forward testing results
Output Format
Always provide:
- Performance metrics table
- Equity curve visualization
- Drawdown analysis
- Trade distribution stats
- Risk metrics
- Recommendations for improvement
Backtesting in Pine Script has limitations. Past performance doesn't guarantee future results. Always include appropriate disclaimers.