Claude Code Plugins

Community-maintained marketplace

Feedback

Intelligent skill router that analyzes user requests and automatically dispatches to the most appropriate skill(s) or zen-mcp tools. Routes to zen-chat for Q&A, zen-thinkdeep for deep problem investigation, codex-code-reviewer for code quality, simple-gemini for standard docs/tests, deep-gemini for deep analysis, or plan-down for planning. Use this skill proactively to interpret all user requests and determine the optimal execution path.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name main-router
description Intelligent skill router that analyzes user requests and automatically dispatches to the most appropriate skill(s) or zen-mcp tools. Routes to zen-chat for Q&A, zen-thinkdeep for deep problem investigation, codex-code-reviewer for code quality, simple-gemini for standard docs/tests, deep-gemini for deep analysis, or plan-down for planning. Use this skill proactively to interpret all user requests and determine the optimal execution path.

Main Router - 智能技能路由调度器

Overview

This skill serves as the central intelligence hub that analyzes user requests and automatically routes them to the most appropriate skill(s) for execution. It acts as a smart dispatcher, understanding user intent and orchestrating the right tools for the job.

Core Capabilities:

  • Standards-based routing (follows AGENTS.md/CLAUDE.md)
  • Intent analysis and classification
  • Skill matching and selection
  • Multi-skill orchestration (sequential or parallel)
  • Conflict resolution and disambiguation
  • Automatic routing without user intervention
  • Full automation mode support (router makes decisions autonomously)

Division of Responsibilities:

  • Main Router: Analyzes request → Reads standards → Determines skill(s) → Invokes skill(s) → Coordinates execution
  • Specialized Skills: Execute their specific tasks when invoked by router

Standards Compliance:

  • MUST read global and project AGENTS.md/CLAUDE.md before routing
  • Apply standards hierarchy: Global AGENTS.md > Project AGENTS.md > Global CLAUDE.md > Project CLAUDE.md
  • All routing decisions must align with documented rules and workflows

Active Task Monitoring (CRITICAL - Router Must Not Be Lazy):

Main Router MUST actively monitor the entire task lifecycle and proactively invoke appropriate skills at each stage. Do NOT skip skill invocations to save time - proper skill usage ensures quality and compliance.

Mandatory Workflow Rules:

  1. Planning Phase:

    • When user requests "制定计划" / "生成 plan.md" / "规划任务"
    • MUST use plan-down skill (not Main Claude direct planning)
    • Rationale: plan-down provides multi-model validation and structured decomposition
  2. Code Generation → Quality Check Cycle:

    • After Main Claude completes ANY code generation/modification
    • MUST invoke codex-code-reviewer to validate quality
    • Rationale: Ensures 5-dimension quality check (quality, security, performance, architecture, docs)
  3. Test Code Generation Workflow:

    • When Main Claude needs test code
    • Step 1: MUST invoke simple-gemini to generate test files
    • Step 2: MUST invoke codex-code-reviewer to validate generated tests
    • Step 3: Return validated tests to Main Claude for execution
    • Rationale: Ensures test quality before execution
  4. Documentation Generation:

    • Standard docs (README, PROJECTWIKI, CHANGELOG) → simple-gemini
    • Deep analysis docs (architecture, performance) → deep-gemini
    • Rationale: Specialized skills produce higher quality, standards-compliant docs
  5. Continuous Monitoring:

    • Router monitors task progress throughout execution
    • Proactively suggests skill invocations when opportunities arise
    • Example: "刚完成代码,是否需要我使用 codex 检查质量?"

Anti-Pattern - Router Being Lazy (FORBIDDEN):

❌ BAD: Main Claude generates code → Main Claude self-reviews → Done
✅ GOOD: Main Claude generates code → Router invokes codex-code-reviewer → Done

❌ BAD: Main Claude writes plan.md directly
✅ GOOD: Router invokes plan-down skill → plan.md generated with validation

❌ BAD: Main Claude generates tests → Run immediately
✅ GOOD: Router invokes simple-gemini → codex validates → Main Claude runs

When to Use This Skill

Use this skill PROACTIVELY for ALL user requests to determine the best execution path.

Typical User Requests:

  • "解释一下什么是..." (→ zen-chat)
  • "深度分析问题..." (→ zen-thinkdeep)
  • "帮我检查代码" (→ codex-code-reviewer)
  • "生成 README 文档" (→ simple-gemini)
  • "深度分析这段代码的性能" (→ deep-gemini)
  • "制定开发计划" (→ plan-down)
  • "写测试文件" (→ simple-gemini)
  • "生成架构分析文档" (→ deep-gemini)
  • Any task-related request or Q&A

Router's Decision Process:

User Request → Read Standards (AGENTS.md/CLAUDE.md) → Intent Analysis → Skill Matching → Auto/Manual Decision → Execution

Operation Modes:

  1. Interactive Mode (Default):

    • Router asks user for clarification when ambiguous
    • User makes final decisions on skill selection
    • Router provides recommendations with rationale
  2. Full Automation Mode (Three-Layer Architecture - Router as Global Truth Source):

    🚨 CRITICAL - Router's Exclusive Role:

    • ONLY main-router detects automation triggers in user's initial request
    • ONLY main-router sets automation_mode = true/false status
    • Main-router MUST pass automation_mode to all downstream skills via context
    • Context Format: [AUTOMATION_MODE: true] or [AUTOMATION_MODE: false]
    • Downstream skills: READ ONLY - never detect or modify automation_mode themselves

    Automation Trigger Keywords:

    • "全程自动化" / "full automation" / "自动化流程" / "全自动" / "自动化模式"

    Behavior in Automation Mode:

    • Router and Main Claude make all decisions autonomously
    • DO NOT ask user for confirmation ("是否继续?" is FORBIDDEN)
    • DO NOT present choices - auto-select best option based on confidence + standards
    • Log all decisions to auto_log.md with reason, confidence, standards
    • Only ask user in exceptional cases (blocking errors, security risks, data safety)

    Decision Logging Template:

    [自动决策记录]
    决策:[what was decided]
    理由:[why this decision was made]
    置信度:[low/medium/high/very_high]
    标准依据:[AGENTS.md G1, P2要求, etc.]
    已记录到 auto_log.md
    

Available Skills Registry

0. zen-chat (Direct Tool)

Purpose: General Q&A and collaborative thinking partner

Triggers:

  • "解释一下..."
  • "什么是..."
  • "如何理解..."
  • "帮我分析一下..." (non-technical deep analysis)
  • General questions, brainstorming, explanations

Use Cases:

  • Answer conceptual questions
  • Explain programming concepts
  • Brainstorming ideas
  • Quick clarifications
  • Thoughtful explanations

Key Features:

  • Fast, direct responses
  • No file operations needed
  • Conversation-based
  • Supports multi-turn discussions

Tool: mcp__zen__chat (direct invocation, not a packaged skill)


0.5. zen-thinkdeep (Direct Tool)

Purpose: Multi-stage investigation and reasoning for complex problem analysis

Triggers:

  • "深度分析问题..."
  • "调查这个bug的根因..."
  • "系统性分析..." (technical deep dive)
  • "复杂问题分析..."
  • Architecture decisions, complex bugs, performance challenges

Use Cases:

  • Complex bug investigation
  • Architecture decision analysis
  • Performance bottleneck deep dive
  • Security analysis
  • Systematic hypothesis testing

Key Features:

  • Multi-stage investigation workflow
  • Hypothesis-driven analysis
  • Evidence-based findings
  • Expert validation
  • Comprehensive problem-solving

Tool: mcp__zen__thinkdeep (direct invocation, not a packaged skill)


1. codex-code-reviewer

Purpose: Code quality review with iterative fix-and-recheck cycles

Triggers:

  • "使用codex对代码进行检查"
  • "检查刚刚生成的代码是否存在问题"
  • "每次生成完一次代码就要进行检查"
  • "代码审查"
  • "代码质量检查"

Use Cases:

  • Post-development code quality validation
  • Pre-commit code review
  • Bug fix verification
  • Refactoring quality assurance

Key Features:

  • 5-dimension quality check (quality, security, performance, architecture, documentation)
  • Iterative fix cycles (max 5 iterations)
  • User approval required before fixes
  • Based on AGENTS.md and CLAUDE.md standards

Tool: mcp__zen__codereview


2. simple-gemini

Purpose: Standard documentation and test code generation

Triggers:

  • "使用gemini来编写测试文件"
  • "使用gemini来编写文档"
  • "生成README"
  • "生成PROJECTWIKI"
  • "生成CHANGELOG"
  • "写测试代码"

Use Cases:

  • Generate standard project documentation (PROJECTWIKI, README, CHANGELOG, ADR)
  • Write test code files
  • Create project templates
  • Standard documentation maintenance

Key Features:

  • Two modes: Interactive (default) and Automated
  • Document types: PROJECTWIKI, README, CHANGELOG, ADR, plan.md
  • Test code generation with codex validation
  • Follows AGENTS.md/CLAUDE.md standards

Tool: mcp__zen__clink (launches gemini CLI in WSL)


3. deep-gemini

Purpose: Deep technical analysis documents with complexity evaluation

Triggers:

  • "使用gemini深度分析代码逻辑"
  • "生成架构分析文档"
  • "分析性能瓶颈并生成报告"
  • "深度理解这段代码并生成文档"
  • "生成模型架构分析"

Use Cases:

  • Code logic deep dive
  • Model architecture analysis
  • Performance bottleneck analysis
  • Technical debt assessment
  • Security analysis report

Key Features:

  • Two-stage workflow: clink (Gemini CLI analysis) → docgen (dual-phase document generation)
  • Big O complexity analysis included (docgen 核心能力)
  • Automatic Mermaid diagram generation
  • Evidence-based findings
  • Professional technical writing

Tools: mcp__zen__clink + mcp__zen__docgen

docgen 工作流程:

  • Step 1: Exploration (探查项目结构,制定文档计划)
  • Step 2+: Per-File Documentation (生成结构化文档,包含复杂度分析)

4. plan-down ⭐ MANDATORY for Planning

Purpose: Intelligent planning with task decomposition and multi-model validation

CRITICAL: This skill is MANDATORY for all plan.md generation tasks

  • Main Claude must NOT generate plan.md directly
  • Router MUST invoke plan-down for all planning requests
  • Rationale: Ensures multi-model validation and structured decomposition

Triggers:

  • "帮我制定计划"
  • "生成 plan.md"
  • "使用 planner 进行任务规划"
  • "帮我做任务分解"
  • "制定实施方案"
  • "规划项目"

Use Cases:

  • Feature development planning
  • Project implementation roadmaps
  • Refactoring strategies
  • Migration plans
  • Complex task breakdown

Key Features:

  • Two-stage workflow: planner (decomposition) → consensus (validation)
  • Multi-model evaluation (codex, gemini, gpt-5)
  • Standards-based planning (AGENTS.md/CLAUDE.md)
  • Mermaid dependency graphs
  • Risk assessment tables

Tools: mcp__zen__chat (Phase 0 method clarity judgment) + mcp__zen__planner + mcp__zen__consensus (conditional - only for Automatic + Unclear path) + mcp__zen__clink (when using consensus with codex/gemini)

Model Support (CRITICAL - Follow G10 Rules):

  • For codex/gemini models in consensus: MUST launch CLI via mcp__zen__clink BEFORE calling consensus
    • Step 1: Use mcp__zen__clink to start codex/gemini CLI session
    • Step 2: Use mcp__zen__consensus which will use the established CLI session
    • Rationale: codex/gemini require CLI session, direct API calls will fail (401 error)
  • For other models (gpt-5-pro, claude, etc.): Direct API access via consensus
  • Best Practice: If using mixed models (codex + gpt-5-pro), start CLI first for safety

Enforcement:

IF user requests planning OR plan.md generation:
    MUST route to plan-down
    NEVER allow Main Claude to create plan.md directly

Reason: plan-down provides superior planning quality through:
- Multi-stage interactive planning
- Multi-model consensus validation
- Standards compliance verification
- Risk assessment and dependency analysis

Routing Decision Logic

Phase 0: Standards Reading & MCP Discovery (CRITICAL - First Step)

Main Router's Action:

Before ANY routing decision, MUST complete the following two sub-phases:

Phase 0.1: Read Standards

Read the following files to understand project-specific rules and workflows:

a) Read Global Standards:

  • Global AGENTS.md: /home/vc/.claude/AGENTS.md
    • Extract: Global rules (G1-G8), phase requirements (P1-P4), routing mechanism
    • Key focus: Which phase user is in, execution permissions, documentation requirements
  • Global CLAUDE.md: /home/vc/.claude/CLAUDE.md
    • Extract: Model development workflow, ethics principles, reproducibility requirements

b) Read Project-Specific Standards (if exist):

  • Project AGENTS.md: ./AGENTS.md (current directory)
    • Extract: Project-specific rules, custom workflows, overrides
  • Project CLAUDE.md: ./CLAUDE.md (current directory)
    • Extract: Project-specific model development rules

Standards Priority Hierarchy (when conflicts):

  1. Global AGENTS.md (highest priority)
  2. Project AGENTS.md (overrides global)
  3. Global CLAUDE.md
  4. Project CLAUDE.md
  5. PROJECTWIKI.md (lowest priority)

Phase 0.2: MCP Capability Reference (Optional Discovery)

Default MCP Assumptions:

zen-mcp is assumed AVAILABLE by default - No pre-check required.

  • All zen-mcp tools are treated as available unless proven otherwise during execution
  • Verification happens lazily when skills actually invoke zen-mcp tools
  • Only communicate with user if tools fail at runtime

User-Mentioned MCP Tools are assumed AVAILABLE - No pre-check required.

  • If user explicitly mentions using specific MCP tools (e.g., "使用 serena 来分析代码", "用 unifuncs 搜索"), those tools are assumed available
  • Router will route optimistically based on user's explicit MCP tool preference
  • Verification happens lazily when those tools are actually invoked
  • Only notify user if the explicitly mentioned tools fail at runtime

Optional MCP Discovery (for non-zen MCPs):

Optionally use ListMcpResourcesTool to discover additional MCP servers:

  • serena (Serena Code Intelligence) - if available, provides code intelligence enhancements
  • unifuncs (Utility Functions) - if available, provides web search/reading
  • Other MCP servers - discovered on-demand

MCP Capability Reference Map:

Built-in knowledge of MCP tools available for skill enhancement:

zen-mcp tools:

  • mcp__zen__chat - General Q&A, collaborative thinking
  • mcp__zen__thinkdeep - Multi-stage investigation, hypothesis testing
  • mcp__zen__codereview - Code quality review (used by codex-code-reviewer)
  • mcp__zen__planner - Interactive sequential planning (used by plan-down)
  • mcp__zen__consensus - Multi-model consensus building (used by plan-down)
  • mcp__zen__clink - Launch CLI tools in WSL (used by simple-gemini, deep-gemini)
  • mcp__zen__docgen - Structured document generation (used by deep-gemini)
  • mcp__zen__precommit - Git changes validation (optional enhancement)
  • mcp__zen__debug - Systematic debugging (optional enhancement)
  • mcp__zen__challenge - Critical thinking tool (optional enhancement)
  • mcp__zen__apilookup - API documentation lookup (optional enhancement)
  • mcp__zen__listmodels - Available AI models query (used by all skills)
  • mcp__zen__version - Server version and config (diagnostic)

serena-mcp tools (Code Intelligence):

  • mcp__serena__list_dir - List directory contents (non-gitignored)
  • mcp__serena__find_file - Find files by pattern
  • mcp__serena__search_for_pattern - Flexible pattern search in codebase
  • mcp__serena__get_symbols_overview - High-level code structure overview
  • mcp__serena__find_symbol - Locate code symbols (classes, methods, etc.)
  • mcp__serena__find_referencing_symbols - Find references to symbols
  • mcp__serena__replace_symbol_body - Edit symbol definitions
  • mcp__serena__insert_after_symbol - Insert code after symbols
  • mcp__serena__insert_before_symbol - Insert code before symbols
  • mcp__serena__write_memory - Store project knowledge
  • mcp__serena__read_memory - Retrieve project knowledge
  • mcp__serena__list_memories - List available memories
  • mcp__serena__delete_memory - Remove memory files
  • mcp__serena__activate_project - Switch between projects
  • mcp__serena__get_current_config - Get agent configuration
  • mcp__serena__check_onboarding_performed - Check project onboarding status
  • mcp__serena__onboarding - Project onboarding workflow
  • mcp__serena__think_about_collected_information - Reflect on gathered info
  • mcp__serena__think_about_task_adherence - Verify task alignment
  • mcp__serena__think_about_whether_you_are_done - Completion check

unifuncs-mcp tools (Utility Functions):

  • mcp__unifuncs__web-search - Web search capability
  • mcp__unifuncs__web-reader - Read web page content

MCP-Skill Capability Matrix:

Skill Required MCP Tools Optional Enhancement Tools Special Requirements
zen-chat mcp__zen__chat mcp__zen__apilookup, mcp__unifuncs__web-search -
zen-thinkdeep mcp__zen__thinkdeep mcp__serena__* (code analysis), mcp__zen__debug -
codex-code-reviewer mcp__zen__codereview mcp__serena__* (symbol editing), mcp__zen__precommit -
simple-gemini mcp__zen__clink mcp__serena__* (code reading), mcp__unifuncs__web-reader -
deep-gemini mcp__zen__clink, mcp__zen__docgen mcp__serena__* (code analysis), mcp__zen__apilookup -
plan-down mcp__zen__chat, mcp__zen__planner, mcp__zen__consensus (conditional), mcp__zen__clink (for codex/gemini) mcp__serena__read_memory (project context) G10 Compliance: codex/gemini require clink to establish CLI session before consensus. Four-path workflow: Phase 0 uses chat to judge method clarity, then routes to appropriate path.

MCP Availability Strategy:

Optimistic Routing (Default):

  • Assume zen-mcp tools are available - Route to skills without pre-checking
  • Skills will attempt to use zen-mcp tools directly
  • Only intervene if tool invocation fails at runtime

Lazy Verification (On-Demand):

  • Verification happens when skills actually invoke MCP tools
  • If tool fails → Skill reports error back to router
  • Router then communicates with user and suggests fallback

Optional Enhancement Discovery:

  • serena/unifuncs MCPs can be discovered on-demand using ListMcpResourcesTool
  • If discovered → Pass as enhancement options to skills
  • If not discovered → Skills proceed with zen-mcp only (no user notification)

Standards-Based Routing Rules:

  • If user is in P1 (分析问题) phase → May route to zen-thinkdeep for deep analysis
  • If user is in P2 (制定方案) phase → May route to plan-down for planning
  • If user is in P3 (执行方案) phase → May route to codex-code-reviewer after code changes
  • If user mentions "全程自动化" → Enable Full Automation Mode
  • If standards require documentation → Auto-route to simple-gemini or deep-gemini
  • If standards forbid execution (G3 violation) → Do NOT route to execution-related skills

Phase 1: Intent Classification

Main Router's Action:

Analyze the user request to identify:

  1. Primary Intent:

    • General Q&A / explanations → zen-chat
    • Complex problem investigation → zen-thinkdeep
    • Code review / quality check → codex-code-reviewer
    • Standard documentation → simple-gemini
    • Deep technical analysis → deep-gemini
    • Planning / task breakdown → plan-down
    • Other (direct execution by Main Claude)
  2. Request Characteristics:

    • Target: What is the subject? (code files, documentation, architecture, plan)
    • Action: What needs to be done? (check, generate, analyze, plan)
    • Depth: Surface-level or deep analysis?
    • Output: What is expected? (report, document, plan, fixed code)
  3. Context Signals:

    • Keywords in user message
    • Recently modified files (git status)
    • Existing project state (has plan.md? has PROJECTWIKI.md?)
    • User's workflow stage (development, review, planning)

Phase 2: Skill Matching

Decision Tree:

IF user asks general question ("解释", "什么是", "如何理解"):
    → zen-chat

ELSE IF user requests deep problem analysis ("深度分析问题", "调查bug", "系统性分析"):
    → zen-thinkdeep

ELSE IF user mentions "codex" OR "代码检查" OR "代码审查":
    → codex-code-reviewer

ELSE IF user mentions "gemini" AND ("文档" OR "测试"):
    IF mentions "深度" OR "分析" OR "架构" OR "性能":
        → deep-gemini
    ELSE:
        → simple-gemini

ELSE IF user mentions "计划" OR "plan" OR "规划":
    → plan-down

ELSE IF intent is "code review":
    → codex-code-reviewer

ELSE IF intent is "document generation":
    IF document type in [README, PROJECTWIKI, CHANGELOG, 测试]:
        → simple-gemini
    ELSE IF analysis type in [架构, 性能, 代码逻辑]:
        → deep-gemini

ELSE IF intent is "planning":
    → plan-down

ELSE IF intent is "Q&A" (no code/file operations):
    → zen-chat

ELSE:
    → Main Claude (direct execution, no skill routing)

Confidence Scoring:

For each tool/skill, calculate confidence score (0-100):

confidence_scores = {
    "zen-chat": calculate_qa_confidence(request),
    "zen-thinkdeep": calculate_deep_investigation_confidence(request),
    "codex-code-reviewer": calculate_code_review_confidence(request),
    "simple-gemini": calculate_simple_doc_confidence(request),
    "deep-gemini": calculate_deep_analysis_confidence(request),
    "plan-down": calculate_planning_confidence(request)
}

# Interactive Mode (Default)
if max(confidence_scores.values()) >= 60:
    selected_tool = max(confidence_scores, key=confidence_scores.get)
else:
    # Ambiguous - ask user for clarification
    ask_user_to_clarify()

# Full Automation Mode (if user requested)
if automation_mode_enabled:
    if max(confidence_scores.values()) >= 50:  # Lower threshold
        selected_tool = max(confidence_scores, key=confidence_scores.get)
        log_auto_decision(selected_tool, confidence_scores)
    else:
        # Fallback to Main Claude
        selected_tool = "main_claude"

Phase 3: Execution Strategy

Single Skill Execution:

User Request → Analyze → Match to Skill X → Invoke Skill X → Return Result

Multi-Skill Execution (Sequential):

Example: "生成文档然后检查代码"
1. Invoke simple-gemini (generate docs)
2. Wait for completion
3. Invoke codex-code-reviewer (check code)
4. Return combined results

Multi-Skill Execution (Parallel - if independent):

Example: "同时生成计划和README"
1. Invoke plan-down in parallel
2. Invoke simple-gemini in parallel
3. Wait for both to complete
4. Return combined results

Phase 4: Disambiguation

When multiple skills could apply:

Option 1: Ask User (Interactive Mode)

检测到您的请求可以使用以下技能:

1. simple-gemini - 生成标准文档
2. deep-gemini - 生成深度分析文档

请选择:
- 输入 1: 使用 simple-gemini(快速、标准化)
- 输入 2: 使用 deep-gemini(深入、包含复杂度分析)

Option 2: Auto-Select (Full Automation Mode)

CRITICAL: In Full Automation Mode, DO NOT ask user "是否继续?" or present choices

  • Activation: User explicitly requests "全程自动化"/"full automation"/"自动化流程" in initial request

  • Behavior: Router and Main Claude make ALL decisions without user intervention

  • Forbidden Actions:

    • ❌ "是否继续?" (是/否)
    • ❌ "请选择..." (选项 1/2/3)
    • ❌ "是否需要..." (需要/不需要)
    • ❌ Any form of asking user for confirmation or choice
  • Correct Actions:

    • ✅ "[全自动模式] 检测到需要规划,自动调用 plan-down..."
    • ✅ "[全自动模式] 代码已生成,自动调用 codex 检查质量..."
    • ✅ Direct execution with logged rationale
  • Decision Rules:

    • Uses confidence scores with lower threshold (≥50 instead of ≥60)
    • Prefer simpler skills for ambiguous cases:
      • simple-gemini over deep-gemini (unless "深度" mentioned)
      • zen-chat over zen-thinkdeep (unless "调查" or "bug" mentioned)
      • Direct execution over complex skills when unclear
    • Log all auto-decisions with rationale for transparency
    • Standards compliance: Always follows AGENTS.md/CLAUDE.md rules
  • Exception - Only Ask User When:

    • Blocking errors (environment missing, dependency errors)
    • Security risks (sensitive data exposure, production operations)

Full Automation Mode Decision Template:

[全自动模式 - 自动决策]
检测到:{task_description}
自动选择:{selected_tool}
置信度:{confidence_score}%
理由:{rationale based on standards and intent}
标准依据:{relevant AGENTS.md/CLAUDE.md rules}

开始执行...

Router Workflow: Step-by-Step

Step 1: Receive User Request

Main Router's Action:

User: "帮我检查刚刚生成的代码"

Router Internal Analysis:
- Keywords detected: "检查", "代码"
- Intent: Code review
- Target: Recently generated code
- Expected output: Quality report + fixes

Step 2: Read Standards & Discover MCPs (CRITICAL)

Main Router's Action:

Part A: Standards Reading

Standards Reading:
a) Global AGENTS.md (/home/vc/.claude/AGENTS.md):
   - G1: 文档一等公民 - 代码变更必须同步更新文档
   - G3: 无执行许可场景 - 需要用户明确同意
   - Current phase: P3 (执行方案) - just completed code generation

b) Global CLAUDE.md (/home/vc/.claude/CLAUDE.md):
   - 代码规范:清晰、可读
   - 质量门槛:覆盖率 ≥ 70%

c) Project AGENTS.md (./AGENTS.md): [If exists]
   - Project-specific rules

d) Project CLAUDE.md (./CLAUDE.md): [If exists]
   - Model-specific requirements

Standards-Based Decision:
- P3 phase → Code review recommended after code changes (AGENTS.md requirement)
- G1 rule → Must check if documentation was updated
- User approval needed before fixes (G3)

Part B: MCP Capability Reference (No Pre-check)

MCP Assumptions:

zen-mcp:
  Status: ✅ Assumed AVAILABLE (default)
  Tools: All 13 zen-mcp tools assumed ready
  Strategy: Optimistic routing - verify on actual invocation

User-Mentioned MCPs:
  Detection: Check if user explicitly mentioned MCP tools in request
  Example triggers: "使用 serena", "用 unifuncs 搜索", "调用 mcp__serena__find_symbol"
  Status: ✅ Assumed AVAILABLE (if mentioned by user)
  Strategy: Optimistic routing - honor user's explicit tool choice

Optional Enhancement MCPs:
  serena: Can be discovered on-demand for code intelligence
  unifuncs: Can be discovered on-demand for web capabilities
  Strategy: Lazy discovery - only if needed for enhancement

Routing Decision for codex-code-reviewer:
  Required: mcp__zen__codereview (assumed available ✅)
  Enhancement: serena tools (optional, will discover if needed)
  User preference: None mentioned in this request

→ Decision: Proceed with codex-code-reviewer
  Rationale: zen-mcp assumed available, no blocking issues

Step 3: Analyze Intent

Main Router's Action:

Intent Classification:
- Primary Intent: Code review ✅
- Secondary Intent: None
- Complexity: Standard (not deep analysis)
- Urgency: Normal

Context Signals:
- Git status shows modified files: src/features.py, src/model_training.py
- No explicit skill mentioned by user
- Recent activity: Code generation just completed

Standards Alignment:
- Matches P3 phase requirement for post-code-change review
- Aligns with G1 (need to verify doc updates)

Step 4: Match to Skill(s) (Optimistic Routing)

Main Router's Action:

Skill Matching:
- codex-code-reviewer: 95% confidence ✅
  - Reason: Intent is code review, has modified files
  - Standards support: P3 phase requirement
  - zen-mcp: Assumed available (optimistic)
- simple-gemini: 10%
  - zen-mcp: Assumed available
- deep-gemini: 15%
  - zen-mcp: Assumed available
- plan-down: 5%
  - zen-mcp: Assumed available

Decision: Route to codex-code-reviewer
Rationale: Highest confidence + Standards alignment
Note: zen-mcp availability assumed, will verify during execution

Step 5: Invoke Selected Skill (Optimistic Execution)

Main Router's Action:

Invoking: codex-code-reviewer

Parameters:
- Files to review: [src/features.py, src/model_training.py]
- Review type: full
- User approval: required

MCP Strategy:
  Primary tools: zen-mcp (assumed available, no pre-check)
  Enhancement tools: serena/unifuncs (can discover on-demand if needed)

Execution:
[codex-code-reviewer executes workflow using zen-mcp tools]

Error Handling (if zen-mcp fails):
  1. Skill reports error to router
  2. Router notifies user: "mcp__zen__codereview 当前不可用"
  3. Router suggests fallback: Main Claude direct code review
  4. User chooses: Continue with fallback OR troubleshoot MCP

Step 6: Return Results to User

Main Router's Action:

代码审查已完成(使用 codex-code-reviewer):

审查结果:
- 审查文件:2 个
- 发现问题:3 个(已修复)
- 审查轮次:2 / 5

标准合规性检查:
✅ G1: 已验证文档更新(PROJECTWIKI.md, CHANGELOG.md)
✅ G3: 修复前已获得用户授权
✅ 质量门槛:覆盖率达到 75%(超过 70% 阈值)

详细报告:
[codex-code-reviewer's output]

Routing Examples

Example 1: General Q&A Request

User: "解释一下什么是机器学习中的过拟合?"

Router Decision:

Intent: General Q&A
Keywords: "解释一下", "什么是"
Target: Conceptual explanation
Output: Answer/explanation (no file operations)

→ Route to: zen-chat

Rationale:
- Pure conceptual question
- No file/code operations required
- Fast response with zen-chat is sufficient
- No need for complex analysis workflow

Example 2: Deep Problem Investigation

User: "深度分析一下为什么训练时loss不下降的问题"

Router Decision:

Intent: Deep problem investigation
Keywords: "深度分析", "问题"
Target: Complex debugging/troubleshooting
Output: Multi-stage investigation report

→ Route to: zen-thinkdeep

Rationale:
- Requires systematic investigation
- Multi-stage hypothesis testing needed
- zen-thinkdeep provides evidence-based analysis
- Not a simple Q&A, requires deep reasoning

Example 3: Simple Document Generation

User: "生成项目的 README 文档"

Router Decision:

Intent: Document generation
Document Type: README (standard)
Depth: Standard

→ Route to: simple-gemini

Rationale:
- README is a standard document type
- No deep analysis required
- simple-gemini handles README templates

Example 4: Code Quality Check

User: "使用codex对代码进行检查"

Router Decision:

Intent: Code review
Explicit mention: "codex"

→ Route to: codex-code-reviewer

Rationale:
- User explicitly requested codex
- Clear intent for code quality check
- codex-code-reviewer is the designated tool

Example 5: Deep Technical Analysis Request

User: "深度分析 model_training.py 的训练逻辑,包括复杂度"

Router Decision:

Intent: Deep analysis
Keywords: "深度分析", "复杂度"
Target: Specific code file
Output: Technical analysis document

→ Route to: deep-gemini

Rationale:
- "深度分析" signals need for comprehensive analysis
- "复杂度" requires Big O analysis (deep-gemini feature)
- Not a standard doc, requires clink + docgen workflow

Example 6: Planning Request

User: "帮我制定一个用户认证功能的开发计划"

Router Decision:

Intent: Planning
Keywords: "制定", "计划"
Scope: Feature development
Output: plan.md

→ Route to: plan-down

Rationale:
- Clear planning intent
- Requires task decomposition
- plan-down uses four-path workflow: Phase 0 (chat judges method clarity) → [Conditional Phase 1] → Phase 2 (planner) → Phase 3 (plan.md)

Example 7: Ambiguous Request

User: "生成一份文档"

Router Decision:

Intent: Document generation
Ambiguity: What type of document?

→ Action: Ask User for Clarification

Question to User:
"您想生成哪种类型的文档?

1. 标准项目文档(README, PROJECTWIKI, CHANGELOG)→ simple-gemini
2. 深度技术分析文档(架构分析, 性能分析)→ deep-gemini
3. 开发计划文档(plan.md)→ plan-down

请选择或说明文档类型。"

Example 8: Multi-Skill Sequential

User: "先制定计划,然后生成 README"

Router Decision:

Intent: Multi-task sequential
Task 1: Planning → plan-down
Task 2: Document generation → simple-gemini
Execution: Sequential (Task 1 must complete before Task 2)

→ Execution Plan:
1. Invoke plan-down
2. Wait for completion
3. Invoke simple-gemini
4. Return combined results

Example 9: Full Automation Mode - Correct Behavior

User: "全程自动化,帮我完成这个项目的开发流程:分析现有代码,制定优化计划,生成文档,检查代码质量"

Router Response (CORRECT - No Questions Asked):

[全自动模式] 检测到用户请求"全程自动化",启动全自动工作流。

Step 0: Standards Loading
- 读取 Global AGENTS.md: P1→P2→P3 workflow, G1 文档一等公民
- 读取 Global CLAUDE.md: 模型开发原则
- 读取 Project AGENTS.md: [项目特定规则]

Step 1: Intent Analysis
- 检测到多任务顺序工作流
- 任务序列: 分析 → 规划 → 文档 → 审查

Step 2: Auto-Routing Execution (NO USER CONFIRMATION)

[全自动模式 - 任务 1: 分析现有代码]
自动选择: zen-thinkdeep
置信度: 75%
理由: 需要深度分析,符合 P1 阶段要求
标准依据: AGENTS.md P1 - 分析问题
→ 立即执行 zen-thinkdeep...

[全自动模式 - 任务 2: 制定优化计划]
自动选择: plan-down
置信度: 90%
理由: 明确规划意图,符合 P2 阶段要求
标准依据: AGENTS.md P2 - 制定方案,G11 强制使用 plan-down
→ 立即执行 plan-down...

自动选择: simple-gemini
置信度: 65%
理由: 标准文档生成,ambiguous 时选择 simple over deep
标准依据: G1 - 文档一等公民
→ 立即执行 simple-gemini...

[全自动模式 - 任务 4: 检查代码质量]
自动选择: codex-code-reviewer
置信度: 95%
理由: 明确代码审查意图,符合 P3 阶段要求
标准依据: AGENTS.md P3 - 执行方案后需审查,G11 强制使用 codex
→ 立即执行 codex-code-reviewer...

[全自动模式 - 执行计划]
执行方式:顺序执行(Sequential)
1. zen-thinkdeep → 分析现有代码结构和问题
2. plan-down → 基于分析结果制定优化计划
3. simple-gemini → 生成 PROJECTWIKI.md 和 README.md
4. codex-code-reviewer → 全面代码质量审查

标准依据: AGENTS.md (P1→P2→P3), CLAUDE.md (质量原则)
平均置信度: 81.25%

⚠️ 注意:全程无需用户确认,自动执行所有步骤。

[全自动模式 - 任务完成]
所有任务执行完毕。
→ 生成决策日志 auto_log.md...
→ 使用 simple-gemini 记录完整决策过程

Final Step - Auto Log Generation (MANDATORY):

After all tasks complete in Full Automation Mode:

Tool: simple-gemini (or invoke directly via skill)
Task: Generate auto_log.md
Content Requirements:
  - 完整决策时间线(每个阶段的时间戳)
  - 所有自动决策的选择理由和标准依据
  - 调用的技能/工具列表及参数
  - 置信度评分和风险评估
  - 遇到的问题和解决方案
  - 最终结果和输出文件清单
  - 决策树可视化(Mermaid)

Template Structure for auto_log.md:
---
# 全自动化执行日志 (Auto Execution Log)
生成时间: {timestamp}

## 执行摘要 (Executive Summary)
- 用户初始请求: {original_request}
- 执行模式: 全自动化
- 总任务数: {task_count}
- 成功/失败: {success_count}/{failure_count}
- 总耗时: {duration}

## 决策时间线 (Decision Timeline)
{chronological list of all decisions}

## 技能调用记录 (Skills Invoked)
{list of all skills with parameters and results}

## 自动决策详情 (Auto-Decision Details)
{detailed rationale for each auto-decision}

## 遇到的问题 (Issues Encountered)
{any errors or blockers, and how they were resolved}

## 输出文件清单 (Output Files)
{list of all generated files}
---

Purpose: Provide complete transparency to user

Anti-Pattern - WRONG Full Automation Behavior:

❌ WRONG:
"由于当前是全自动化模式,我将自动进入 P2 阶段并调用 plan-down 生成详细方案。
 是否继续?(全自动模式下默认继续,如需调整技术栈请告知)"

Why Wrong:
- 询问"是否继续?" - 违反全自动化原则
- "如需调整技术栈请告知" - 不应提示用户干预
- 应该直接执行,而非询问

✅ CORRECT:
"[全自动模式] 检测到需要制定方案,自动进入 P2 阶段。
 调用 plan-down skill 生成详细方案...
 (决策依据:用户初始请求包含'全程自动化',当前阶段 P1→P2,标准依据 G11)"

Example 10: User Explicitly Mentions MCP Tools

User: "使用 serena 的 find_symbol 工具来分析代码结构,然后生成文档"

Router Decision:

Intent: Multi-task sequential with explicit MCP tool preference
User-Mentioned MCP: serena (specifically mcp__serena__find_symbol)
Task 1: Code structure analysis (using serena)
Task 2: Document generation

Step 0.2: MCP Assumptions
→ zen-mcp: Assumed AVAILABLE (default) ✅
→ serena: Assumed AVAILABLE (user explicitly mentioned) ✅
→ No pre-check needed for either

Step 1: Intent Analysis
→ User wants to use serena for code analysis
→ Then generate documentation based on analysis

Step 2: Routing Decision

Task 1: Code Analysis with serena
→ Tool: Main Claude with mcp__serena__find_symbol
Rationale: User explicitly requested serena tool
Strategy: Direct invocation, verify lazily at runtime

Task 2: Generate Documentation
→ Route to: simple-gemini (confidence: 70%)
Rationale: Standard documentation generation after analysis
Note: Can leverage serena findings from Task 1

→ Execution Plan (Sequential):
1. Main Claude invokes mcp__serena__find_symbol for code analysis
2. Collect structure findings
3. Invoke simple-gemini for documentation (can reference serena findings)
4. Return combined results

Error Handling:
If mcp__serena__find_symbol fails at runtime:
  → Notify user: "serena 工具当前不可用"
  → Fallback: Use zen-mcp code analysis tools or manual code reading
  → User choice: Continue with fallback OR troubleshoot serena MCP

Example 11: Complete Task Lifecycle with Active Monitoring ⭐ BEST PRACTICE

User: "帮我开发一个用户登录功能"

Router Active Monitoring Workflow:

Phase 1: Planning
→ Router detects: User requests feature development
→ Action: MUST invoke plan-down (not Main Claude direct planning)
→ Tool: plan-down skill
→ Output: plan.md with multi-model validated task breakdown

Phase 2: Code Generation (Main Claude executes)
→ Router monitors: Main Claude generates login.py
→ Router detects: Code generation completed
→ Action: MUST invoke codex-code-reviewer for quality check
→ Tool: codex-code-reviewer
→ Output: Quality report + potential fixes

Phase 3: Test Code Generation
→ Router detects: Need test code for login.py
→ Action 1: MUST invoke simple-gemini to generate test_login.py
→ Action 2: MUST invoke codex-code-reviewer to validate test code
→ Tool: simple-gemini → codex-code-reviewer
→ Output: Validated test_login.py ready for Main Claude to execute

Phase 4: Documentation
→ Router detects: Need to update PROJECTWIKI.md
→ Action: MUST invoke simple-gemini for doc generation
→ Tool: simple-gemini
→ Output: Updated PROJECTWIKI.md with login feature docs

Phase 5: Final Validation
→ Router detects: All components completed
→ Action: MUST invoke codex-code-reviewer for final review
→ Tool: codex-code-reviewer
→ Output: Comprehensive quality report

Full Execution Log:
1. plan-down → plan.md generated ✅
2. Main Claude → login.py generated
3. codex-code-reviewer → login.py validated ✅
4. simple-gemini → test_login.py generated
5. codex-code-reviewer → test_login.py validated ✅
6. Main Claude → tests executed ✅
7. simple-gemini → PROJECTWIKI.md updated ✅
8. codex-code-reviewer → final validation ✅

Router's Active Role:
- Monitored entire lifecycle (5 phases)
- Invoked skills 6 times proactively
- Did NOT allow Main Claude to skip quality checks
- Ensured proper skill usage at each stage

Key Takeaway: Router actively monitors and intervenes, ensuring proper skill usage throughout the task lifecycle. No lazy shortcuts allowed.


Example 12: Code + Review Workflow

User: "生成测试文件然后检查代码质量"

Router Decision:

Intent: Multi-task sequential
Task 1: Generate tests → simple-gemini
Task 2: Code review → codex-code-reviewer
Execution: Sequential

→ Execution Plan:
1. Invoke simple-gemini (test code generation)
2. Wait for test files to be created
3. Invoke codex-code-reviewer (review all code including new tests)
4. Return results

Best Practices

For Effective Routing

  1. Active Monitoring (CRITICAL - Anti-Lazy Principle):

    • Router MUST monitor task lifecycle continuously
    • Proactively invoke skills at appropriate stages
    • NEVER allow Main Claude to skip quality checks
    • Mandatory interventions:
      • plan.md generation → MUST use plan-down
      • Code generation complete → MUST use codex-code-reviewer
      • Test code needed → MUST use simple-gemini → codex validation
      • Documentation needed → MUST use simple-gemini/deep-gemini
    • Think: "What skill should be used at this stage?"
  2. Keyword Detection:

    • Look for explicit skill/tool names (chat, thinkdeep, codex, gemini, planner)
    • Look for action verbs (解释, 调查, 检查, 生成, 分析, 规划)
    • Look for output types (答案, 调查报告, 文档, 计划, 测试)
    • Look for question patterns (什么是, 如何理解, 为什么)
  3. Context Awareness:

    • Check git status for recently modified files
    • Check for existing artifacts (plan.md, PROJECTWIKI.md)
    • Consider user's recent interactions
    • Note project phase (planning, development, review)
  4. Confidence Thresholds:

    • High confidence (≥80): Auto-route
    • Medium confidence (60-79): Auto-route with notification
    • Low confidence (<60): Ask user for clarification
  5. User Communication:

    • Always inform user which skill was selected
    • Provide rationale for skill selection
    • Allow user to override router's decision
  6. Error Handling:

    • If selected skill fails, offer fallback options
    • If no skill matches, execute directly with Main Claude
    • If user request is unclear, ask clarifying questions

Router Communication Template

Format:

[决策通知]
检测到任务类型:[任务类型]
选择技能:[技能名称]
理由:[简短说明]

开始执行...

Example:

[决策通知]
检测到任务类型:代码质量审查
选择技能:codex-code-reviewer
理由:您请求检查代码质量,codex-code-reviewer 提供全面的 5 维度审查

开始执行...

Routing Decision Matrix

User Intent Primary Keywords Selected Tool/Skill Rationale
一般问答 解释, 什么是, 如何理解 zen-chat General Q&A, no file ops
深度问题调查 深度分析问题, 调查bug, 系统性分析 zen-thinkdeep Multi-stage investigation
代码审查 检查, 审查, codex codex-code-reviewer Code quality validation
标准文档 文档, README, CHANGELOG, 测试 simple-gemini Standard doc templates
深度技术分析 深度, 分析, 架构, 性能, 复杂度 deep-gemini Technical analysis + complexity
规划制定 计划, plan, 规划, 分解 plan-down Task decomposition + validation
文档生成(不明确) 生成文档 Ask User Ambiguous - need clarification

Special Cases

Case 1: No Matching Skill

Scenario: User request doesn't match any skill

Action:

Router Analysis:
- No skill confidence > 60%
- Request is outside skill scope

→ Decision: Execute directly with Main Claude
→ Notification: "此任务将由主模型直接处理(无需专用技能)"

Case 2: Conflicting Skills

Scenario: Multiple skills have similar confidence scores

Action:

Router Analysis:
- simple-gemini: 75%
- deep-gemini: 73%
- Difference < 10% → Ambiguous

→ Decision: Ask user to choose
→ Present both options with pros/cons

Case 3: Runtime MCP Tool Failure

Scenario A: zen-mcp tool fails during skill execution (discovered at runtime)

Action:

Skill Execution Error:
- Skill: deep-gemini
- Failed MCP call: mcp__zen__docgen
- Error: "MCP tool not available" or "Connection failed"

Router Receives Error and Responds:

→ Notification to User:
  "在执行 deep-gemini 时遇到问题:
   mcp__zen__docgen 当前不可用。

   可选方案:
   1. 使用 simple-gemini(仅需 mcp__zen__clink)
   2. 主模型直接生成文档(无 MCP 增强)
   3. 检查 zen-mcp 服务状态后重试

   请选择(或输入 3 后使用 /mcp status 检查)"

User Choice Handling:
- Choice 1 → Route to simple-gemini
- Choice 2 → Main Claude direct execution
- Choice 3 → Wait for user to troubleshoot, then retry

Note: This only happens when zen-mcp actually fails at runtime,
      not during routing phase (optimistic assumption).

Scenario B: User-mentioned MCP tool fails at runtime

Action:

Direct MCP Invocation Error:
- User request: "使用 serena 的 find_symbol 分析代码"
- Failed MCP call: mcp__serena__find_symbol
- Error: "MCP server 'serena' not found" or "Tool not available"

Router Receives Error and Responds:

→ Notification to User:
  "您指定的 MCP 工具当前不可用:
   mcp__serena__find_symbol

   错误信息:{error_details}

   可选方案:
   1. 使用 zen-mcp 的代码分析工具(mcp__zen__thinkdeep)
   2. 主模型直接读取代码进行分析
   3. 检查 serena MCP 服务状态后重试(/mcp status)

   请选择处理方式:"

User Choice Handling:
- Choice 1 → Route to zen-thinkdeep (alternative analysis)
- Choice 2 → Main Claude manual code reading
- Choice 3 → Wait for user to troubleshoot, then retry original request

Note: User-mentioned MCP tools are assumed available (optimistic),
      but must provide clear error feedback if they fail at runtime.

Case 4: User Override

Scenario: User explicitly requests a different skill

User: "不用 codex,用 gemini 来分析"

Action:

Router Analysis:
- Original selection: codex-code-reviewer
- User override: Use gemini (deep-gemini)

→ Decision: Respect user choice
→ Route to: deep-gemini
→ Notification: "已切换到 deep-gemini(根据您的要求)"

Notes

Core Principles

  • Active Task Monitoring (HIGHEST PRIORITY - Anti-Lazy Principle):

    • Router MUST continuously monitor task lifecycle
    • Proactively invoke skills at critical stages
    • Mandatory skill usage rules (NEVER skip):
      • plan.md → plan-down (MANDATORY)
      • Code complete → codex-code-reviewer (MANDATORY)
      • Test code → simple-gemini + codex validation (MANDATORY)
      • Documentation → simple-gemini or deep-gemini (MANDATORY)
    • Think at each stage: "Should I invoke a skill here?"
    • Being lazy is FORBIDDEN - always use proper skills
  • Standards-First Approach: ALWAYS read AGENTS.md/CLAUDE.md before routing decisions

    • Global AGENTS.md: /home/vc/.claude/AGENTS.md
    • Global CLAUDE.md: /home/vc/.claude/CLAUDE.md
    • Project AGENTS.md: ./AGENTS.md (if exists)
    • Project CLAUDE.md: ./CLAUDE.md (if exists)
  • MCP-Aware Routing: Optimistic assumption with lazy verification

    • zen-mcp assumed available by default - No pre-check required
    • User-mentioned MCP tools assumed available - Honor user's explicit tool choice
    • Route to skills immediately without MCP verification
    • Verify MCP availability lazily (on actual tool invocation)
    • Only communicate with user if MCP tools fail at runtime
    • Optional: Discover serena/unifuncs MCPs on-demand for enhancements
    • Provide fallback options when MCP tools actually fail
  • Proactive Usage: Main Router should be invoked for ALL task-related user requests

  • Standards Compliance: All routing decisions must align with documented rules

    • Respect phase requirements (P1→P2→P3)
    • Follow global rules (G1-G8)
    • Apply project-specific overrides when applicable

Operation Modes

  • Interactive Mode (Default):

    • Ask user for clarification when ambiguous
    • Confidence threshold: ≥60%
    • User makes final decisions
    • Provide recommendations with rationale
  • Full Automation Mode:

    • Activation: Keywords in user's initial request: "全程自动化", "full automation", "自动化流程"
    • Behavior: Router and Main Claude make ALL decisions autonomously
    • CRITICAL - DO NOT ask user:
      • ❌ "是否继续?"
      • ❌ "请选择..."
      • ❌ "是否需要..."
      • ✅ Direct execution with logged rationale
    • Decision Rules:
      • Lower confidence threshold: ≥50%
      • Auto-select best option (no user choice)
      • Log all auto-decisions with rationale
      • Standards-based decision making (no guessing)
    • Exception: Only ask when blocking errors or security risks occur
    • Mandatory Final Step: After all tasks complete, generate auto_log.md using simple-gemini
      • Purpose: Complete transparency and audit trail
      • Content: Decision timeline, skills invoked, rationale, results
      • Format: Structured Markdown with timestamps and decision tree
    • Prefer simpler skills when ambiguous

Best Practices

  • Transparency: Always inform user which skill/tool was selected and why

    • Focus on intent match and standards alignment in routing notification
    • Honor user's explicit MCP tool choice (e.g., "使用 serena") without pre-checking
    • Only mention MCP status if there's a runtime failure
    • Acknowledge when routing based on user's explicit MCP preference
  • Flexibility: Support user overrides and manual skill selection

    • Allow user to choose alternative skills if zen-mcp fails at runtime
    • Respect user's explicit skill preference
  • Efficiency: Prefer simpler skills when ambiguous

    • simple-gemini over deep-gemini (unless "深度" mentioned)
    • zen-chat over zen-thinkdeep (unless "调查" or "bug" mentioned)
    • Direct execution over complex skills when unclear
  • Context-Aware: Consider project state, recent activity, git status, and AGENTS.md phase

    • Leverage serena memory tools for project context (if discovered)
    • Use git status to inform routing decisions
  • Multi-Skill Support: Handle sequential and parallel skill execution

    • Route to multiple skills when user requests multi-task workflows
    • Execute skills independently or sequentially as needed
  • Fallback Strategy: Graceful degradation on runtime failures

    • zen-mcp fails → Notify user and suggest alternative skill or Main Claude
    • Provide actionable troubleshooting steps (e.g., "/mcp status")
    • Allow user to retry after troubleshooting
  • Continuous Improvement: Learn from user corrections and overrides

    • Track skill selection patterns for future optimization
    • Log runtime MCP failures for debugging
  • No Redundancy: Don't invoke router for meta-requests about the router itself

Router Self-Awareness

The router should NOT route these requests:

  • "What skills are available?" → Direct answer
  • "How does routing work?" → Direct answer
  • "Explain the router" → Direct answer
  • General questions about Claude Code or skills → Direct answer

The router SHOULD route these requests:

  • General Q&A and explanations → zen-chat
  • Deep problem investigation → zen-thinkdeep
  • Any task-specific request (code review, docs, planning, analysis)
  • Requests with explicit skill/tool names
  • Requests with clear intent (review, generate, analyze, plan, explain, investigate)