Claude Code Plugins

Community-maintained marketplace

Feedback

Method clarity-driven planning workflow using zen-mcp tools (chat, planner, consensus). Phase 0 uses chat to judge if user provides clear implementation method. Four execution paths based on automation_mode × method clarity - Interactive/Automatic × Clear/Unclear. All paths converge at planner for task decomposition. Produces complete plan.md file. Use when user requests "制定计划", "生成plan.md", "使用planner规划", "帮我做任务分解", or similar planning tasks.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name plan-down
description Method clarity-driven planning workflow using zen-mcp tools (chat, planner, consensus). Phase 0 uses chat to judge if user provides clear implementation method. Four execution paths based on automation_mode × method clarity - Interactive/Automatic × Clear/Unclear. All paths converge at planner for task decomposition. Produces complete plan.md file. Use when user requests "制定计划", "生成plan.md", "使用planner规划", "帮我做任务分解", or similar planning tasks.

Plan-Down - 方法驱动的四路径智能规划生成器

Overview

This skill provides a comprehensive method clarity-driven planning workflow that intelligently adapts to both user interaction preference (Interactive/Automatic) and implementation method clarity (Clear/Unclear).

Core Innovation: Uses zen-mcp chat as decision module to assess whether user provides a "clear implementation method" before planning.

Four Execution Paths:

  1. Interactive + Clear: Direct planning with user approval
  2. Interactive + Unclear: Multi-round dialogue to clarify method, then plan
  3. Automatic + Clear: Fully automated planning
  4. Automatic + Unclear: AI chain (clink → chat → consensus) to enrich method, then plan

The final output is a complete plan.md file ready for implementation.

Technical Architecture:

  • zen-mcp chat: Method clarity judgment + interactive clarification + deep thinking (via clink)
  • zen-mcp planner: Interactive, sequential planning tool with revision and branching capabilities
  • zen-mcp consensus: Multi-model method validation (only for Automatic + Unclear path)
  • Main Claude Model: Context gathering, workflow orchestration, plan.md generation
  • User: Provides ideas/requirements (interactive mode) or none (automatic mode)

New Four-Path Workflow:

User Request → Phase 0 (chat: Method Clear?) → [Conditional Phase 1] → Phase 2 (planner) → Phase 3 (plan.md)
                        ↓                              ↓
                   Clear / Unclear           Clear: Skip to Phase 2
                                            Unclear: Phase 1 (Clarify/Enrich)
                                                    ↓
                                            Interactive: Dialogue with user
                                            Automatic: clink → chat → consensus

Division of Responsibilities:

Phase 0 (Method Clarity Assessment - ALWAYS):

  • chat tool: Judge if user provides clear implementation method
  • Main Claude: Gather context from AGENTS.md/CLAUDE.md/PROJECTWIKI.md

Phase 1 (Method Clarification/Enrichment - CONDITIONAL):

  • Path A (Interactive + Unclear): chat multi-round dialogue with user to clarify
  • Path B (Automatic + Unclear): clink → gemini CLI → chat → consensus → synthesis
  • Main Claude: Orchestrate clarification/enrichment process

Phase 2 (Task Decomposition - ALL PATHS CONVERGE):

  • planner tool: Task breakdown, milestone definition, dependency mapping, structured planning
  • Main Claude: Invoke planner with clear/enriched method

Phase 3 (Final Plan Generation - ALL PATHS):

  • Main Claude: Generate and save plan.md directly from planner output (no intermediate review)

When to Use This Skill

Trigger this skill when the user requests:

  • "帮我制定计划"
  • "生成 plan.md"
  • "使用 planner 进行任务规划"
  • "帮我做任务分解"
  • "制定实施方案"
  • "规划项目"
  • Any request for systematic planning and task breakdown

Use Cases:

  • Feature development planning
  • Project implementation roadmaps
  • Refactoring strategies
  • Migration plans
  • Research initiatives
  • Complex task breakdowns

Operation Mode (Based on Router's automation_mode)

🚨 CRITICAL: This skill MUST read the automation_mode status from the context set by main-router. DO NOT ask the user about automation preference or check for trigger phrases - this is handled exclusively by the router.

Mode Detection (READ ONLY - Three-Layer Architecture)

Layer 1: Router (Global Truth Source)

  • Only the main-router judges and sets automation_mode based on initial request
  • Status is set once at task start and remains unchanged throughout lifecycle

Layer 2: Transmission

  • Router passes automation_mode status to this skill via context
  • Format: [AUTOMATION_MODE: true] or [AUTOMATION_MODE: false]

Layer 3: Skill (READ ONLY - This Skill)

✅ MUST DO:

  • Read automation_mode from context passed by router
  • Adjust behavior based on the status:
    • automation_mode=true → Auto-approve all decisions (plan outline, consensus feedback), log to auto_log.md
    • automation_mode=false → Interactive confirmation required

❌ ABSOLUTELY FORBIDDEN:

  • ❌ Ask user "是否需要自动化执行?"
  • ❌ Check user's initial request for automation keywords
  • ❌ Modify the automation_mode status set by router
  • ❌ Re-detect automation triggers during execution

Workflow: Intelligent Planning Process with Method Clarity Assessment

Overview: Decision Flow Based on Method Clarity

flowchart TD
    Start[User Request] --> Read[Read automation_mode from context]
    Read --> Judge{Use chat to judge:<br/>Method Clear?}

    Judge -->|Clear| Clear[Method Clear]
    Judge -->|Unclear| Unclear[Method Unclear]

    Clear --> CheckMode1{automation_mode?}
    Unclear --> CheckMode2{automation_mode?}

    CheckMode1 -->|false| Path1[Interactive + Clear:<br/>planner → plan.md]
    CheckMode1 -->|true| Path2[Automatic + Clear:<br/>planner → plan.md]

    CheckMode2 -->|false| Path3[Interactive + Unclear:<br/>chat dialogue → planner → plan.md]
    CheckMode2 -->|true| Path4[Automatic + Unclear:<br/>clink → chat → consensus → planner → plan.md]

    Path1 --> End[Final plan.md]
    Path2 --> End
    Path3 --> End
    Path4 --> End

Phase 0: Method Clarity Assessment (CRITICAL - First Step)

Main Claude's Action:

  1. Read automation_mode from context (passed by main-router)

    • Format: [AUTOMATION_MODE: true] or [AUTOMATION_MODE: false]
  2. Gather Initial Context:

    a) Read Global Standards (CRITICAL):

    • Global AGENTS.md: /home/vc/.claude/AGENTS.md - 全局规则 (G1-G11)、阶段要求 (P1-P4)
    • Global CLAUDE.md: /home/vc/.claude/CLAUDE.md - 模型开发工作流、伦理、可复现性

    b) Read Project-Specific Standards (if exist):

    • Project AGENTS.md: ./AGENTS.md - 项目特定规则和流程
    • Project CLAUDE.md: ./CLAUDE.md - 项目特定模型开发规范

    c) Read Project Documentation:

    • PROJECTWIKI.md - 项目知识库
    • README.md - 项目概述
    • plan.md (如果存在) - 现有计划
    • docs/adr/*.md - 架构决策记录

    Standards Priority (when conflicts):

    1. Global AGENTS.md (最高优先级)
    2. Project AGENTS.md
    3. Global CLAUDE.md
    4. Project CLAUDE.md
    5. PROJECTWIKI.md
  3. Invoke zen-mcp chat to assess method clarity:

    Tool: mcp__zen__chat
    Parameters:
    - prompt: "分析以下用户请求,判断其是否包含'清晰的实践方法':
    
      用户请求:[用户的原始输入]
    
      已收集的项目上下文:
      - 项目类型:[from PROJECTWIKI/README]
      - 技术栈:[from context]
      - 现有规范:[from AGENTS.md/CLAUDE.md]
    
      判断标准:
      - '方法清晰' = 用户明确说明了要做什么、怎么做、关键步骤是什么
      - '方法模糊' = 用户只提供了目标/想法,但缺少具体实施路径
    
      请输出:'方法清晰' 或 '方法模糊',并简要说明理由。"
    
    - working_directory: "."
    - model: "gemini-2.5-pro" (or user-specified model)
    

Output:

  • "方法清晰" → Proceed to Phase 2 (Direct Planning)
  • "方法模糊" → Proceed to Phase 1 (Method Clarification/Enrichment)

Phase 1: Method Clarification / Enrichment (Conditional - Only if Method Unclear)

This phase is SKIPPED if Phase 0 determined "方法清晰"

Decision Tree Based on automation_mode:

Path A: Interactive Mode (automation_mode = false) + Method Unclear

Main Claude's Action:

使用 mcp__zen__chat 与用户进行多轮对话,澄清实践方法:

Tool: mcp__zen__chat
Parameters:
- prompt: "您提到要[用户目标],让我帮您明确具体的实践方法:

  当前理解:
  - 目标:[user's goal]
  - 已知上下文:[project context]

  需要澄清的问题:
  1. 具体要实现哪些功能/步骤?
  2. 优先级是什么?
  3. 是否有技术偏好或约束?
  4. 预期的里程碑和时间线?

  请提供更多细节,我将帮您整理成清晰的实践方案。"

- working_directory: "."
- model: "gemini-2.5-pro"
- continuation_id: [maintain conversation context]

Iteration:

  • Continue chat dialogue until user provides clear implementation method
  • Main Claude synthesizes user responses into structured requirements
  • Once clear → Proceed to Phase 2 (planner)

Output: Clarified implementation method ready for planning


Path B: Automatic Mode (automation_mode = true) + Method Unclear

Main Claude's Action - Full Auto-Enrichment Chain:

Step 1: Launch chat via clink for deep thinking

Tool: mcp__zen__clink
Parameters:
- cli_name: "gemini"  # Using gemini CLI for deep analysis
- prompt: "基于以下模糊想法,进行深度思考并形成清晰的实践方法:

  用户想法:[用户的原始输入]

  项目上下文:
  - 技术栈:[from context]
  - 现有架构:[from PROJECTWIKI]
  - 规范要求:[from AGENTS.md/CLAUDE.md]

  请进行以下思考:
  1. 这个想法的核心目标是什么?
  2. 有哪些可行的实现路径?
  3. 每条路径的优缺点是什么?
  4. 考虑项目现状,最佳实践方法是什么?
  5. 关键步骤和里程碑应该是什么?

  输出:结构化的实践方法方案(包含目标、路径、步骤、里程碑)"

- role: "default"
- files: [relevant project files]

What Happens:

  • clink launches gemini CLI in WSL
  • Gemini performs deep thinking about the vague idea
  • Returns structured implementation approaches

Step 2: Multi-model consensus evaluation

IMPORTANT: Follow G10 - CLI must be launched first

Tool: mcp__zen__consensus
Parameters:
- step: "评审以下由 gemini 深度思考得出的实践方法方案:

  [从 Step 1 获得的方案]

  评审要点:
  1. 方案的可行性和完整性
  2. 是否符合项目技术栈和架构
  3. 是否遵循 AGENTS.md/CLAUDE.md 规范
  4. 步骤分解是否合理
  5. 里程碑设置是否清晰
  6. 优化建议

  请提供多角度的评审意见。"

- step_number: 1
- total_steps: 2
- next_step_required: true
- findings: "Gemini CLI 已完成深度思考,生成初步方案"
- models: [
    {model: "codex", stance: "against", stance_prompt: "批判性审查方案可行性"},
    {model: "gpt-5-pro", stance: "neutral", stance_prompt: "客观评估方案合理性"},
  ]
- use_assistant_model: true
- continuation_id: [from clink session if applicable]

What Happens:

  • consensus orchestrates multi-model review (uses established CLI session for codex)
  • Multiple AI perspectives evaluate and enrich the method
  • Consensus synthesis produces optimized implementation approach

Step 3: Synthesize final clear method

Main Claude integrates:

  • Original user idea
  • Gemini's deep thinking
  • Multi-model consensus feedback

Output: Enriched, validated implementation method ready for planning

Decision Logging (Automatic Mode):

[自动决策记录]
决策:方法模糊 → 全自动充实流程
流程:clink(gemini) → consensus(codex+gpt-5-pro) → 整合最终方案
置信度:high
标准依据:G11 自动化模式规则,使用多模型验证确保方案质量
已记录到 auto_log.md

Phase 2: Task Decomposition via Planner

Input Source (Depends on Phase 0 Decision):

  • If "方法清晰" (Phase 0): Use user's original clear implementation method directly
  • If "方法模糊" (Phase 0 → Phase 1): Use clarified/enriched method from Phase 1
    • Interactive Mode (Path A): Clarified through chat dialogue
    • Automatic Mode (Path B): Enriched through clink → chat → consensus chain

Main Claude's Action:

Invoke planner tool to perform interactive task breakdown:

Tool: mcp__zen__planner
Parameters:
- step: "基于以下需求,进行任务分解和初步规划:

  **实践方法**(来源:[Phase 0 直接获取 / Phase 1 澄清/充实]):
  [用户的清晰实践方法 OR Phase 1 的澄清/充实结果]

  目标:[从实践方法中提取]
  范围:[从实践方法中提取]
  约束:[从实践方法中提取]

  **必须遵循的规范(CRITICAL):**
  [从 Global AGENTS.md 提取的关键规则,如 G1-G11]
  [从 Global CLAUDE.md 提取的核心原则]
  [从 Project AGENTS.md/CLAUDE.md 提取的项目特定规则]

  例如:
  - G1: 文档一等公民 - 代码变更必须同步更新 PROJECTWIKI.md 和 CHANGELOG.md
  - G2: 知识库策略 - 架构图使用 Mermaid,API 定义与代码一致
  - G8: plan.md 强制使用 plan-down skill 生成
  - CLAUDE.md 原则二: 可复现性 - 必须创建模型卡片/运行记录

  请创建详细的任务分解计划,包括:
  1. 主要里程碑和阶段
  2. 每个阶段的具体任务
  3. 任务之间的依赖关系
  4. 预估工作量和时间
  5. 潜在风险和缓解措施
  6. 验收标准
  7. **遵循 AGENTS.md/CLAUDE.md 规范的具体措施**

  使用清晰的层级结构组织任务。"

- step_number: 1
- total_steps: 3 (初步估计:问题理解 → 初步规划 → 细化调整)
- next_step_required: true
- model: "gemini-2.5-pro" (或用户指定的模型)
- use_assistant_model: true (启用专家模型进行规划验证)

What Happens (planner workflow execution):

  1. planner receives planning requirements (from clear method or enriched method)
  2. planner performs interactive, sequential planning:
    • Step 1: Describe the task, problem, and scope
    • Step 2: Break down into phases and milestones
    • Step 3: Define specific tasks for each phase
    • Step 4: Map dependencies and risks
    • Step 5: Estimate effort and timeline
    • Each step builds on previous steps incrementally
  3. planner supports revision and branching if needed
  4. Complete plan structure is returned

planner's Specialized Capabilities:

  • Interactive, step-by-step planning
  • Revision capabilities (can revise earlier steps)
  • Branching support (explore alternative approaches)
  • Incremental plan building with deep reflection
  • Expert model validation (if use_assistant_model=true)

Output: Complete plan structure ready for final generation

Note on Workflow Simplification:

In the new four-path design, consensus evaluation of planner output is NO LONGER needed. The workflow proceeds directly from planner to final plan.md generation:

  • All four paths: planner → plan.md (no intermediate consensus review)
  • Rationale:
    • planner already has built-in expert model validation (use_assistant_model=true)
    • For "Automatic + Unclear" path, consensus was already used in Phase 1 to validate the implementation method
    • Removing redundant review step improves efficiency while maintaining quality

If user requests revision during planner execution:

  • Use planner's revision capability (set is_step_revision: true)
  • Or create alternative branch (set is_branch_point: true)

Phase 3: Final Plan Generation (Direct from Planner)

Why Direct Generation:

In the new four-path workflow, we skip the intermediate consensus review of planner output because:

  1. planner already has validation: Built-in expert model validation (use_assistant_model=true)
  2. Consensus used earlier (for Automatic + Unclear path): Already validated the implementation method in Phase 1
  3. Efficiency: Eliminates redundant review step while maintaining quality
  4. All paths converge here: planner → plan.md

Main Claude's Action:

Generate final plan.md directly from planner output:

  1. Synthesize Plan Structure:

    • Use planner's complete plan structure
    • For "Automatic + Unclear" path: Implementation method was already validated by consensus in Phase 1
    • For all paths: planner's expert validation (use_assistant_model=true) ensures quality
  2. Structure plan.md:

# Plan: [项目/任务名称]

## 目标 (Objective)
[明确的目标描述]

## 范围 (Scope)
### 包含 (In-Scope)
- [项目 1]
- [项目 2]

### 不包含 (Out-of-Scope)
- [非目标 1]
- [非目标 2]

## 规范遵循 (Standards Compliance)

### 全局规范 (Global Standards)
**来源**: `/home/vc/.claude/AGENTS.md`, `/home/vc/.claude/CLAUDE.md`

**关键规则**:
- **G1 - 文档一等公民**: 代码变更必须同步更新 PROJECTWIKI.md 和 CHANGELOG.md
- **G2 - 知识库策略**: 架构图使用 Mermaid,API 定义与代码一致
- **G4 - 一致性与质量**: 确保 API 和数据模型与代码实现一致
- **CLAUDE 原则二 - 可复现性**: 创建模型卡片/运行记录,包含环境、依赖、超参数
- **CLAUDE 原则三 - 基线优先**: 先简单模型,后复杂模型

### 项目规范 (Project-Specific Standards)
**来源**: `./AGENTS.md`, `./CLAUDE.md` (如果存在)

- [项目特定规则 1]
- [项目特定规则 2]

### 本计划遵循措施:
- [ ] 每个代码变更阶段包含文档更新任务
- [ ] 使用 Mermaid 绘制架构和流程图
- [ ] 创建模型卡片(如涉及机器学习)
- [ ] 遵循 Conventional Commits 规范
- [ ] [其他项目特定遵循措施]

## 里程碑 (Milestones)
1. [ ] **[里程碑 1]** - [预计完成时间]
   - [关键交付物]
2. [ ] **[里程碑 2]** - [预计完成时间]
   - [关键交付物]

## 任务分解 (Task Breakdown)

### 阶段 1: [阶段名称]
**目标**: [阶段目标]
**预计时长**: [X 天/周]

- [ ] **任务 1.1**: [任务描述]
  - 依赖: [无 / 任务 X.X]
  - 预计工作量: [X 小时/天]
  - 验收标准: [明确的完成标准]

- [ ] **任务 1.2**: [任务描述]
  - 依赖: 任务 1.1
  - 预计工作量: [X 小时/天]
  - 验收标准: [明确的完成标准]

### 阶段 2: [阶段名称]
...

## 依赖关系 (Dependencies)
```mermaid
graph TD
    A[任务 1.1] --> B[任务 1.2]
    B --> C[任务 2.1]
    C --> D[里程碑 1]

风险管理 (Risk Management)

风险 影响 概率 缓解措施
[风险 1] 高/中/低 高/中/低 [缓解措施]
[风险 2] 高/中/低 高/中/低 [缓解措施]

资源需求 (Resource Requirements)

  • 人力: [所需角色和人数]
  • 工具: [所需工具和服务]
  • 时间: [总预计时间]

验收标准 (Acceptance Criteria)

  • [标准 1]
  • [标准 2]
  • [标准 3]

评审历史 (Review History)

  • Planner 评审: [日期] - 任务分解完成
  • Consensus 评审: [日期] - 多模型验证通过
    • Codex: [关键反馈]
    • Gemini: [关键反馈]
    • GPT-5: [关键反馈]

修订记录 (Revision Log)

  • [日期] - 初始计划创建
  • [日期] - 根据 consensus 反馈更新

3. **Save to File:**
   - Use Write tool to save to `./plan.md`
   - Or user-specified path
   - Default filename: `plan.md`

**Output:** Complete plan.md file saved to disk

---

### Phase 4: Post-Planning Actions (Optional)

**Main Claude's Action (if requested by user):**

1. **Create Task Tracking:**
   - Extract tasks into GitHub Issues
   - Create project board
   - Set up milestones

2. **Generate Summary:**
   - One-page executive summary
   - Gantt chart (Mermaid)
   - Timeline visualization

3. **Integration with Project Wiki:**
   - Link plan.md to PROJECTWIKI.md
   - Update "设计决策 & 技术债务" section
   - Add to CHANGELOG.md

---

## Complete Workflow Examples

### Example 1: Path 1 - Interactive + Clear Method

**User Request:**

帮我制定一个用户注册功能的实施计划。

实施方法:

  1. 设计数据库表结构(users 表,包含 id, username, email, password_hash, created_at)
  2. 实现后端 API(POST /api/register,包含输入验证和密码哈希)
  3. 创建前端注册表单(React 组件,表单验证)
  4. 编写单元测试和集成测试
  5. 更新文档(API 文档,PROJECTWIKI.md)

**Workflow:**

Phase 0: chat judges → "方法清晰" (用户明确说明了5个步骤) ↓ Phase 2: planner receives clear method → task decomposition ↓ Phase 3: Generate plan.md


**Main Claude Actions:**
- Phase 0: Invoke `mcp__zen__chat` → Returns "方法清晰"
- Phase 2: Invoke `mcp__zen__planner` with the 5-step method
- Phase 3: Generate and save plan.md

**automation_mode: false** → User confirms plan outline before saving

---

### Example 2: Path 2 - Interactive + Unclear Method

**User Request:**

帮我制定一个提升系统性能的计划。我觉得现在系统太慢了。


**Workflow:**

Phase 0: chat judges → "方法模糊" (只有目标,缺少具体方法) ↓ Phase 1A: chat multi-round dialogue with user User clarifies: 性能瓶颈在数据库查询、需要优化前端加载、考虑引入缓存 ↓ Main Claude synthesizes: 明确的三阶段优化方法 ↓ Phase 2: planner receives clarified method → task decomposition ↓ Phase 3: Generate plan.md


**Main Claude Actions:**
- Phase 0: Invoke `mcp__zen__chat` → Returns "方法模糊"
- Phase 1A: Multiple `mcp__zen__chat` calls (dialogue)
  - Q1: "性能瓶颈在哪里?数据库、前端还是后端?"
  - User: "主要是数据库查询慢,前端加载也有点问题"
  - Q2: "是否考虑引入缓存?Redis 或其他方案?"
  - User: "可以考虑 Redis"
  - Synthesis: 形成清晰的数据库优化 + 前端优化 + 缓存方案
- Phase 2: Invoke `mcp__zen__planner` with clarified method
- Phase 3: Generate and save plan.md

**automation_mode: false** → User participates in clarification dialogue

---

### Example 3: Path 3 - Automatic + Clear Method

**User Request (with "全程自动化" keyword):**

全程自动化模式:帮我制定一个 CI/CD 流程优化计划。

实施方法:

  1. 迁移到 GitHub Actions(从 Jenkins)
  2. 配置自动化测试流水线
  3. 设置部署到 staging 和 production 环境
  4. 添加代码质量检查(linting, coverage)
  5. 配置通知机制(Slack 集成)

**Workflow:**

Phase 0: chat judges → "方法清晰" ↓ Phase 2: planner receives clear method → task decomposition ↓ Phase 3: AUTO-generate plan.md (no user approval needed)


**Main Claude Actions:**
- Phase 0: Invoke `mcp__zen__chat` → Returns "方法清晰"
- Phase 2: Invoke `mcp__zen__planner` with the 5-step method
- Phase 3: Auto-generate plan.md → Log decision to auto_log.md

[自动决策记录] 决策:方法清晰且完整,自动批准并生成 plan.md 置信度:high 标准依据:用户提供了5个明确步骤,符合 AGENTS.md 规划要求 已记录到 auto_log.md


**automation_mode: true** → All decisions auto-approved

---

### Example 4: Path 4 - Automatic + Unclear Method (MOST COMPLEX)

**User Request (with "全程自动化" keyword):**

全自动模式:帮我设计一个智能推荐系统。我想给用户推荐他们可能感兴趣的内容。


**Workflow:**

Phase 0: chat judges → "方法模糊" (只有想法,缺少实施路径) ↓ Phase 1B: Auto-enrichment chain (no user interaction) Step 1: clink → gemini CLI (deep thinking) Gemini analyzes: 推荐系统的多种实现路径 - 协同过滤 - 基于内容的推荐 - 混合推荐 Gemini proposes: 采用混合推荐方法的实施方案 ↓ Step 2: consensus multi-model review codex (critical): 评估技术可行性 gpt-5-pro (neutral): 平衡评估 Synthesis: 优化后的实施方案 ↓ Step 3: Main Claude synthesizes final method ↓ Phase 2: planner receives enriched method → task decomposition ↓ Phase 3: AUTO-generate plan.md


**Main Claude Actions:**

**Phase 0:**

Tool: mcp__zen__chat Output: "方法模糊" - 只有推荐系统的想法,缺少实施路径


**Phase 1B - Step 1 (Deep Thinking via clink):**

Tool: mcp__zen__clink Parameters:

  • cli_name: "gemini"
  • prompt: "基于'智能推荐系统'这个模糊想法,进行深度思考... 分析协同过滤、基于内容、混合推荐等方案..."

Output: Gemini 提出混合推荐方法(用户行为 + 内容特征 + 深度学习)


**Phase 1B - Step 2 (Consensus Validation):**

IMPORTANT: Gemini CLI session already established in Step 1

Tool: mcp__zen__consensus Parameters:

  • step: "评审 gemini 提出的混合推荐方法方案..."
  • models: [ {model: "codex", stance: "against"}, # Uses established CLI session {model: "gpt-5-pro", stance: "neutral"} ]

Output: Consensus 综合反馈 - 方案可行,建议先从简单协同过滤开始


**Phase 1B - Step 3 (Synthesis):**

Main Claude integrates:

  • User's original idea (智能推荐系统)
  • Gemini's deep thinking (混合推荐方法)
  • Consensus feedback (先简单后复杂)

Final enriched method: 阶段1:基于协同过滤的基础推荐(用户-物品矩阵) 阶段2:添加基于内容的特征(标签、分类) 阶段3:引入深度学习模型(如需要)


**Phase 2:**

Tool: mcp__zen__planner Input: Enriched method from Phase 1B Output: Detailed task breakdown with milestones


**Phase 3:**

AUTO-generate plan.md Log to auto_log.md: [自动决策记录] 决策:方法模糊 → 自动充实流程完成 流程:clink(gemini) → consensus(codex+gpt-5-pro) → 整合方案 → planner → plan.md 置信度:high 标准依据:多模型验证确保方案质量,符合 G11 自动化规则 已记录到 auto_log.md


**automation_mode: true** → Full automation, no user interaction

---

## Tool Parameters Reference

### Important: Tool Parameter Contracts (Prevent Misuse)

**🚨 CRITICAL - Parameter Validation Rules:**

Different zen-mcp tools have **different parameter contracts**. Using unsupported parameters will cause tool invocation to fail.

#### mcp__zen__chat Tool

**Purpose:** Q&A, method clarity judgment, interactive clarification

**Supported Parameters (Complete List):**
- ✅ `prompt` - Required, non-empty string
- ✅ `working_directory` - Required, absolute directory path
- ✅ `model` - Required, model name (e.g., "gemini-2.5-pro")
- ✅ `temperature` - Optional, 0-1 (default varies by model)
- ✅ `thinking_mode` - Optional, "minimal"/"low"/"medium"/"high"/"max"
- ✅ `files` - Optional, list of file paths
- ✅ `images` - Optional, list of image paths
- ✅ `continuation_id` - Optional, session continuation ID

**Example:**
```yaml
Tool: mcp__zen__chat
Parameters:
  prompt: "判断用户是否提供清晰的实践方法..."
  working_directory: "."
  model: "gemini-2.5-pro"

mcp__zen__clink Tool

Purpose: Launch external CLI (codex, gemini, claude) for deep thinking or specialized tasks

Supported Parameters (Complete List):

  • prompt - Required, non-empty string
  • cli_name - Required, CLI name ("codex" / "gemini" / "claude")
  • role - Optional, role preset ("default" / "codereviewer" / "planner")
  • files - Optional, list of file paths
  • images - Optional, list of image paths
  • continuation_id - Optional, session continuation ID

❌ Unsupported Parameters (Will Be Rejected):

  • working_directory - Not supported, CLI runs in current directory
  • args - Built-in parameters, cannot be manually passed
  • model - Model is determined by cli_name
  • ❌ Any other unlisted fields

Example:

Tool: mcp__zen__clink
Parameters:
  prompt: "基于模糊想法进行深度思考..."
  cli_name: "gemini"
  role: "default"
  files: ["/path/to/context.md"]
  # ❌ Do NOT include: working_directory, args, model

Why the difference?

  • chat is a direct API call tool that needs to know the working context directory
  • clink launches an external CLI process that inherits the current shell's working directory

mcp__zen__planner Tool

Purpose: Interactive, sequential planning with revision and branching capabilities

Key Parameters:

step: |           # Planning content for this step
  [Step 1: Describe task, problem, scope]
  [Later steps: Updates, revisions, branches, questions]
step_number: 1    # Current step (starts at 1)
total_steps: 3    # Estimated total steps
next_step_required: true  # Whether another step follows
model: "gemini-2.5-pro"  # Model for planning
use_assistant_model: true  # Enable expert validation
is_step_revision: false    # Set true when replacing a previous step
revises_step_number: null  # Step number being replaced (if revising)
is_branch_point: false     # True when creating alternative branch
branch_id: null            # Branch name (e.g., "approach-A")
branch_from_step: null     # Step number where branch starts
more_steps_needed: false   # True when adding steps beyond prior estimate

Specialized Capabilities:

  • Step-by-step incremental planning
  • Revision support (replace earlier steps)
  • Branching (explore multiple approaches)
  • Deep reflection between steps
  • Expert model validation
  • Context preservation via continuation_id

Typical Flow:

Step 1: Describe task → planner analyzes
Step 2: Break down phases → planner structures
Step 3: Define tasks → planner details
Step 4: Map dependencies → planner validates
Final: Complete plan outline

mcp__zen__consensus Tool

Purpose: Multi-model consensus building through systematic analysis and structured debate

Key Parameters:

step: |           # The proposal/question every model will see
  [Evaluate the following plan...]
  [Provide specific, actionable feedback]
step_number: 1    # Current step (1 = your analysis, 2+ = model responses)
total_steps: 4    # Number of models + synthesis step
next_step_required: true  # True until synthesis
findings: |       # Step 1: your analysis; Steps 2+: summarize model response
  [Your independent analysis or model response summary]
models: [         # User-specified roster (2+ models, each with unique stance)
  {model: "codex", stance: "against", stance_prompt: "Critical review"},
  {model: "gemini-2.5-pro", stance: "neutral", stance_prompt: "Objective"},
  {model: "gpt-5-pro", stance: "for", stance_prompt: "Optimization"}
]
relevant_files: []  # Optional supporting files (absolute paths)
use_assistant_model: true  # Enable expert synthesis
current_model_index: 0      # Managed internally, starts at 0
model_responses: []         # Internal log of responses

Model Support (CRITICAL - Follow G10 Rules):

  • For codex/gemini models: MUST launch CLI via clink BEFORE calling consensus
    • Step 1: Use mcp__zen__clink to start codex/gemini CLI session
    • Step 2: Use mcp__zen__consensus which will use the established CLI session
    • Rationale: codex/gemini require CLI session, direct API calls will fail (401 error)
  • For other models (gpt-5-pro, claude, etc.): Direct API access via consensus
  • Best Practice: If using mixed models (codex + gpt-5-pro), start CLI first for safety
  • Usage in plan-down: consensus is ONLY used in Phase 1 Path B (Automatic + Unclear) to validate implementation method, NOT to review planner output

Specialized Capabilities:

  • Multi-model consultation (minimum 2 models)
  • Configurable stances (for/against/neutral)
  • Independent Main Claude analysis first
  • Systematic debate structure
  • Comprehensive synthesis
  • Expert validation after all models respond

Stance Configuration:

  • "against": Critical review, challenge feasibility, identify risks
  • "neutral": Objective evaluation, balanced perspective
  • "for": Optimization suggestions, improvement opportunities

Typical Flow:

Step 1: Your independent analysis (findings)
Step 2: Model 1 evaluation (codex - critical)
Step 3: Model 2 evaluation (gemini - neutral)
Step 4: Model 3 evaluation (gpt-5-pro - optimistic)
Final: Synthesis of all perspectives

Four-Path Workflow Summary

New Architecture (Method Clarity-Driven):

All paths follow: Phase 0 (Method Clarity Assessment) → [Conditional Phase 1] → Phase 2 (planner) → Phase 3 (plan.md)

Path 1: Interactive + Clear

User Request → Phase 0 (chat judges: "方法清晰") → Phase 2 (planner) → Phase 3 (plan.md)

Path 2: Interactive + Unclear

User Request → Phase 0 (chat judges: "方法模糊") → Phase 1A (chat dialogue with user) → Phase 2 (planner) → Phase 3 (plan.md)

Path 3: Automatic + Clear

User Request → Phase 0 (chat judges: "方法清晰") → Phase 2 (planner) → Phase 3 (plan.md)

Path 4: Automatic + Unclear

User Request → Phase 0 (chat judges: "方法模糊") → Phase 1B (clink → chat → consensus → synthesis) → Phase 2 (planner) → Phase 3 (plan.md)

Key Changes from Old Design:

  • Removed: consensus evaluation of planner output (was redundant)
  • Added: Phase 0 (Method Clarity Assessment using chat)
  • Added: Phase 1 (Conditional - only for unclear methods)
  • Simplified: All paths converge at planner → plan.md (no intermediate reviews)

Best Practices

For Effective Planning

  1. Clear Objectives:

    • Start with well-defined goals
    • Clarify scope boundaries (in-scope vs out-of-scope)
    • Set realistic timelines
    • Define success criteria upfront
  2. Comprehensive Context:

    • Gather all relevant project documentation
    • Understand existing architecture decisions
    • Identify technical constraints early
    • Note dependencies on external systems
  3. Iterative Refinement:

    • Use planner's revision capability when needed
    • Don't hesitate to explore alternative branches
    • Incorporate consensus feedback thoroughly
    • Validate with domain experts if available
  4. Risk-Aware Planning:

    • Identify risks early (planner stage)
    • Get multi-perspective risk assessment (consensus stage)
    • Define mitigation strategies
    • Plan for contingencies

Plan Quality Standards

Must Include:

  • Clear objective and scope definition
  • Hierarchical task breakdown with dependencies
  • Realistic time estimates
  • Risk assessment and mitigation
  • Acceptance criteria for each phase
  • Mermaid diagrams for dependencies and timeline
  • Review history showing planner + consensus validation

Plan.md Structure:

1. Objective (明确目标)
2. Scope (范围界定)
3. Standards Compliance (规范遵循) - 全局 + 项目规范 ✨
4. Milestones (里程碑)
5. Task Breakdown (任务分解) - 可勾选
6. Dependencies (依赖关系) - Mermaid 图
7. Risk Management (风险管理) - 表格
8. Resource Requirements (资源需求)
9. Acceptance Criteria (验收标准)
10. Review History (评审历史)
11. Revision Log (修订记录)

Formatting Best Practices:

  • Use checkboxes [ ] for all tasks and milestones
  • Group tasks by phases/stages
  • Use Mermaid graph TD for dependency visualization
  • Use tables for risk assessment
  • Include time estimates for each task
  • Add dependencies explicitly (task X.X depends on task Y.Y)

Notes

  • New Four-Path Architecture: Method clarity-driven workflow with conditional enrichment
    • Phase 0: chat judges method clarity ("方法清晰" vs "方法模糊")
    • Phase 1 (conditional): Method clarification/enrichment (only if method unclear)
    • Phase 2: planner performs task decomposition (all paths converge here)
    • Phase 3: Direct plan.md generation (no intermediate consensus review)
  • consensus Usage: ONLY in Phase 1 Path B (Automatic + Unclear) to validate implementation method, NOT to review planner output
  • Workflow Simplification: Removed redundant consensus review of planner output for efficiency
  • Standards-Based Planning: CRITICAL - All plans must comply with global and project-specific AGENTS.md/CLAUDE.md standards
  • Standards Priority Hierarchy:
    1. Global AGENTS.md (/home/vc/.claude/AGENTS.md) - 最高优先级
    2. Project AGENTS.md (./AGENTS.md) - 项目覆盖全局
    3. Global CLAUDE.md (/home/vc/.claude/CLAUDE.md)
    4. Project CLAUDE.md (./CLAUDE.md)
    5. PROJECTWIKI.md - 项目特定文档
  • Sequential Workflow: Phases build on previous results (Phase 0 → Phase 1 → Phase 2 → Phase 3)
  • Iterative Refinement: planner supports revision and branching for continuous improvement
  • Multi-Perspective (Phase 1B only): For Automatic + Unclear path, consensus evaluates implementation method from multiple angles (critical, neutral, optimistic)
  • Context Preservation: All tools support continuation_id for multi-turn workflows
  • Expert Validation: planner has built-in expert model validation (use_assistant_model=true)
  • Output Format: Final plan.md includes dedicated "Standards Compliance" section listing applicable rules
  • Compliance Verification: planner ensures tasks include standards adherence
  • Compatibility: Works seamlessly with AGENTS.md workflow (especially P2: 制定方案)
  • Flexibility: Supports branching (alternative approaches) and revision (refine steps) via planner
  • Quality Assurance: Method validation (Phase 0/1) + planner's expert validation ensures high-quality plans
  • Tool Roles:
    • chat: Method clarity judgment + interactive clarification + deep thinking (via clink)
    • consensus: Implementation method validation (Phase 1B only)
    • planner: Task decomposition and structured planning (all paths)
  • Efficiency Improvement: Eliminated redundant consensus review of planner output, streamlined workflow
  • 🚨 CRITICAL - automation_mode Management:
    • Three-Layer Architecture: This skill follows the global automation_mode architecture
    • Router (Layer 1): Only main-router judges and sets automation_mode based on user's initial request
    • Transmission (Layer 2): Router passes automation_mode to this skill via context [AUTOMATION_MODE: true/false]
    • Skill (Layer 3 - READ ONLY): This skill ONLY reads automation_mode, never judges or modifies it
    • ❌ FORBIDDEN: Do NOT ask user "是否需要自动化执行?" or check for automation keywords
    • Automated Mode (automation_mode=true): All decisions (plan outline approval, consensus feedback approval) auto-approved and logged to auto_log.md with reason, confidence, standards