| name | convert-clojure-elm |
| description | Convert Clojure code to idiomatic Elm. Use when migrating Clojure projects to Elm, translating functional patterns from JVM to browser, or building type-safe frontends from Clojure logic. Extends meta-convert-dev with Clojure-to-Elm specific patterns for handling dynamic-to-static typing, REPL-driven to TEA architecture, and side effects to managed effects. |
Convert Clojure to Elm
Convert Clojure code to idiomatic Elm. This skill extends meta-convert-dev with Clojure-to-Elm specific type mappings, idiom translations, and architectural patterns.
This Skill Extends
meta-convert-dev- Foundational conversion patterns (APTV workflow, testing strategies)
For general concepts like the Analyze → Plan → Transform → Validate workflow, testing strategies, and common pitfalls, see the meta-skill first.
This Skill Adds
- Type mappings: Dynamic Clojure types → Static Elm types
- Architecture translation: REPL-driven development → The Elm Architecture (TEA)
- Effect handling: Side effects anywhere → Cmd/Sub managed effects
- Null handling: nil → Maybe/Nothing pattern
- Error handling: Exceptions → Result types
- Data structures: Persistent collections → Immutable records
- Macro translation: Compile-time macros → Type-driven design
This Skill Does NOT Cover
- General conversion methodology - see
meta-convert-dev - Clojure language fundamentals - see
lang-clojure-dev - Elm language fundamentals - see
lang-elm-dev - Reverse conversion (Elm → Clojure) - see
convert-elm-clojure - ClojureScript → Elm (similar but with JS runtime considerations)
Quick Reference
| Clojure | Elm | Notes |
|---|---|---|
nil |
Nothing |
Explicit Maybe type |
{:key "value"} |
{ key = "value" } |
Records are explicit types |
(defn f [x] ...) |
f : a -> bf x = ... |
Type signatures required |
(map f coll) |
List.map f list |
Module-qualified |
(try ... (catch ...)) |
Result type |
No exceptions |
(atom 0) |
Model in TEA | State in architecture |
(assoc m :k v) |
{ model | k = v } |
Record update syntax |
(get m :k) |
model.k |
Field access |
(or x y) |
Maybe.withDefault y x |
Explicit Maybe handling |
(when pred ...) |
if pred then ... else ... |
Always need else |
8 Pillars Validation
Before converting, verify coverage of the 8 pillars essential for code conversion:
| Pillar | lang-clojure-dev | lang-elm-dev | Coverage |
|---|---|---|---|
| Module System | ✓ ns, :require |
✓ module, import |
Green |
| Error Handling | ✓ try/catch, ex-info |
✓ Result, Maybe |
Green |
| Concurrency Model | ✓ atoms, refs, agents | ✓ Cmd/Sub, Task | Green |
| Metaprogramming | ✓ Macros, syntax quote | ✓ No macros (intentional) | Green |
| Zero/Default Values | ~ nil everywhere | ✓ Explicit Maybe, no null | Green |
| Serialization | ✓ EDN, JSON, Transit, spec | ✓ JSON decoders/encoders | Green |
| Build/Deps | ✓ Leiningen, deps.edn | ✓ elm.json, elm install | Green |
| Testing | ✓ clojure.test, test.check | ✓ elm-test, fuzz testing | Green |
Status: Green (8/8 pillars covered)
Recommendation: Proceed with conversion - both skills have comprehensive coverage.
When Converting Code
- Define types first - Clojure is dynamic, Elm requires explicit types for everything
- Map nil → Maybe - Identify all nullable values and make them explicit
- Extract pure functions - Separate logic from side effects
- Design TEA architecture - Model, View, Update before writing code
- Handle all cases - Elm's exhaustive pattern matching replaces runtime checks
- No runtime errors - Elm guarantees no null pointers, no type mismatches
Type System Mapping
Primitive Types
| Clojure | Elm | Notes |
|---|---|---|
nil |
Nothing |
Part of Maybe type |
true/false |
True/False |
Capitalized in Elm |
"string" |
"string" |
Strings are identical |
42 (integer) |
42 : Int |
Explicit type |
3.14 (double) |
3.14 : Float |
Explicit type |
:keyword |
No direct equivalent | Use String or custom type |
'symbol |
No equivalent | Use String or custom type |
Collection Types
| Clojure | Elm | Notes |
|---|---|---|
[1 2 3] (vector) |
[ 1, 2, 3 ] : List Int |
Lists are linked, not vectors |
'(1 2 3) (list) |
[ 1, 2, 3 ] : List Int |
Same as vector in Elm |
{:a 1 :b 2} (map) |
{ a = 1, b = 2 } |
Record with type alias |
#{1 2 3} (set) |
Set.fromList [ 1, 2, 3 ] |
Import Set module |
[x y] (tuple) |
( x, y ) |
Parentheses, max 3 elements |
(seq coll) |
list |
All lists are lazy-ish in Elm |
Composite Types
| Clojure | Elm | Notes |
|---|---|---|
{:name "Alice" :age 30} |
type alias User = { name : String, age : Int } |
Explicit type required |
(defrecord User [name age]) |
type alias User = { name : String, age : Int } |
Type alias for records |
(deftype Point [x y]) |
type Point = Point Float Float |
Custom type |
| Tagged literal | type Msg = Clicked | Typed String |
Union types |
nil-able value |
Maybe User |
Explicit optional |
Function Types
| Clojure | Elm | Notes |
|---|---|---|
(defn f [x] ...) |
f : a -> b |
Type signature required |
(fn [x] ...) |
\x -> ... |
Anonymous function |
#(* % 2) |
\x -> x * 2 |
Lambda syntax |
Multi-arity (defn f ([x] ...) ([x y] ...)) |
Separate functions | No multi-arity |
Variadic (defn f [& args]) |
List a parameter |
No varargs |
Idiom Translation
Pattern: Dynamic Map → Typed Record
Clojure:
;; Maps are dynamic - any keys, any values
(def user {:name "Alice" :email "alice@example.com"})
(defn greet [user]
(str "Hello, " (:name user)))
(defn update-email [user email]
(assoc user :email email))
Elm:
-- Records have explicit types - all fields known at compile time
type alias User =
{ name : String
, email : String
}
greet : User -> String
greet user =
"Hello, " ++ user.name
updateEmail : User -> String -> User
updateEmail user email =
{ user | email = email }
Why this translation:
- Elm requires all record fields to be declared in a type alias
- Field access is compile-time checked
- No runtime key errors possible
- Type inference helps but explicit types are idiomatic
Pattern: nil Handling → Maybe
Clojure:
;; nil can appear anywhere
(defn find-user [id users]
(first (filter #(= (:id %) id) users)))
;; Returns user or nil
(defn display-name [user]
(or (:name user) "Anonymous"))
Elm:
-- Explicit Maybe for optional values
findUser : Int -> List User -> Maybe User
findUser id users =
users
|> List.filter (\u -> u.id == id)
|> List.head -- Returns Maybe User
displayName : Maybe User -> String
displayName maybeUser =
maybeUser
|> Maybe.map .name
|> Maybe.withDefault "Anonymous"
Why this translation:
- Elm has no null/nil - compiler forces you to handle absence
- Maybe makes optionality explicit in type signatures
- Pattern matching ensures all cases are handled
- No NullPointerException possible
Pattern: Sequence Operations
Clojure:
;; Lazy sequences with threading
(->> data
(filter active?)
(map :value)
(reduce +))
;; List comprehension
(for [x (range 10)
:when (even? x)]
(* x 2))
Elm:
-- List pipeline (not lazy by default)
data
|> List.filter active
|> List.map .value
|> List.foldl (+) 0
-- No list comprehension - use map/filter
List.range 0 9
|> List.filter (\x -> modBy 2 x == 0)
|> List.map (\x -> x * 2)
Why this translation:
- Elm's pipeline operator
|>is similar to Clojure's->> - Elm lists are not lazy (except for user-defined streams)
- Use explicit List module functions
- No
forcomprehension - compose map/filter instead
Pattern: Atoms/State → TEA Model
Clojure:
;; Mutable state with atom
(def counter (atom 0))
(defn increment! []
(swap! counter inc))
(defn get-count []
@counter)
Elm:
-- Immutable model in TEA
type alias Model =
{ counter : Int
}
type Msg
= Increment
update : Msg -> Model -> ( Model, Cmd Msg )
update msg model =
case msg of
Increment ->
( { model | counter = model.counter + 1 }, Cmd.none )
-- No direct "get" - view is pure function of model
view : Model -> Html Msg
view model =
div [] [ text (String.fromInt model.counter) ]
Why this translation:
- Elm has no mutable state - all state in Model
- Updates happen through messages (Msg type)
- State changes are pure functions:
Msg -> Model -> (Model, Cmd Msg) - View is always pure function:
Model -> Html Msg
Pattern: Macros → Type-Driven Design
Clojure:
;; Macro for compile-time abstraction
(defmacro unless [condition & body]
`(if (not ~condition)
(do ~@body)))
(unless false
(println "This runs"))
Elm:
-- No macros - use types and functions instead
unless : Bool -> (() -> a) -> Maybe a
unless condition thunk =
if not condition then
Just (thunk ())
else
Nothing
-- Or just use if directly (more idiomatic)
if not condition then
Debug.log "This runs"
else
()
Why this translation:
- Elm has no macros - all code is explicit
- Use higher-order functions for abstraction
- Phantom types encode compile-time constraints
- Code generation (elm-codegen) for repetitive code
Pattern: Destructuring
Clojure:
;; Map destructuring
(let [{:keys [name age]} user]
(str name " is " age))
;; Vector destructuring
(let [[first & rest] coll]
(process first rest))
Elm:
-- Record destructuring
let
{ name, age } = user
in
name ++ " is " ++ String.fromInt age
-- List pattern matching (not destructuring)
case list of
first :: rest ->
process first rest
[] ->
-- Must handle empty list
defaultValue
Why this translation:
- Elm's record destructuring is similar to Clojure's map destructuring
- List destructuring requires pattern matching with
case - Must handle all cases - compiler enforces exhaustiveness
- Can destructure in function parameters:
greet { name } = ...
Error Handling
Clojure Exception Model → Elm Result Model
Clojure uses exceptions:
(defn parse-int [s]
(try
(Integer/parseInt s)
(catch NumberFormatException e
(throw (ex-info "Invalid number" {:input s})))))
(defn divide [a b]
(if (zero? b)
(throw (ex-info "Division by zero" {:a a :b b}))
(/ a b)))
Elm uses Result type:
parseInt : String -> Result String Int
parseInt s =
String.toInt s
|> Result.fromMaybe ("Invalid number: " ++ s)
divide : Float -> Float -> Result String Float
divide a b =
if b == 0 then
Err "Division by zero"
else
Ok (a / b)
-- Chaining Results
parseAndDivide : String -> String -> Result String Float
parseAndDivide numStr denomStr =
Result.map2 divide
(parseInt numStr)
(parseInt denomStr)
|> Result.andThen identity
Why this approach:
- Elm has no exceptions - all errors are values
- Result type makes error handling explicit
- Compiler forces you to handle Err case
- No try/catch needed - pattern match on Result
Error Propagation
Clojure:
;; Exceptions bubble up automatically
(defn process-user [id]
(let [user (fetch-user id) ;; May throw
validated (validate user) ;; May throw
saved (save-user validated)] ;; May throw
saved))
Elm:
-- Results must be explicitly chained
processUser : Int -> Cmd Msg
processUser id =
fetchUser id
|> Task.andThen validateUser
|> Task.andThen saveUser
|> Task.attempt ProcessUserComplete
-- Or with Result in update:
case fetchUser id of
Ok user ->
case validateUser user of
Ok validated ->
case saveUser validated of
Ok saved ->
( { model | user = Just saved }, Cmd.none )
Err saveError ->
( { model | error = Just saveError }, Cmd.none )
Err validationError ->
( { model | error = Just validationError }, Cmd.none )
Err fetchError ->
( { model | error = Just fetchError }, Cmd.none)
-- Better: use Result helpers
processUser : Int -> Result String User
processUser id =
fetchUser id
|> Result.andThen validateUser
|> Result.andThen saveUser
Translation strategy:
- Map Clojure exceptions to Elm Result types
- Use
Result.andThenfor sequential error handling - Use
Result.map2/map3for combining multiple Results - Pattern match in update function to handle errors
Architecture Translation
REPL-Driven Development → The Elm Architecture (TEA)
Clojure approach:
;; Direct interaction with state
(def app-state (atom {:count 0 :users []}))
;; Functions mutate state directly
(defn increment! []
(swap! app-state update :count inc))
(defn add-user! [user]
(swap! app-state update :users conj user))
;; REPL experimentation
(increment!)
@app-state ;; => {:count 1 :users []}
Elm approach (TEA):
-- 1. Define Model (all state)
type alias Model =
{ count : Int
, users : List User
}
-- 2. Define Msg (all possible actions)
type Msg
= Increment
| AddUser User
-- 3. Define Update (pure state transitions)
update : Msg -> Model -> ( Model, Cmd Msg )
update msg model =
case msg of
Increment ->
( { model | count = model.count + 1 }, Cmd.none )
AddUser user ->
( { model | users = model.users ++ [ user ] }, Cmd.none )
-- 4. Define View (pure render function)
view : Model -> Html Msg
view model =
div []
[ div [] [ text ("Count: " ++ String.fromInt model.count) ]
, button [ onClick Increment ] [ text "+" ]
, div [] (List.map viewUser model.users)
]
Translation strategy:
- Identify Clojure atoms/refs → Elm Model fields
- Map mutation functions → Msg constructors
- Extract pure logic into update branches
- Build view as pure function of Model
Side Effects → Cmd and Sub
Clojure (side effects anywhere):
(defn fetch-and-save-user [id]
(let [user (http/get (str "/api/users/" id)) ;; Side effect
parsed (json/parse-string (:body user))] ;; Pure
(db/save! parsed) ;; Side effect
parsed))
Elm (managed effects):
-- Side effects ONLY through Cmd
type Msg
= FetchUser Int
| GotUser (Result Http.Error User)
| SaveUser User
| UserSaved (Result Http.Error ())
update : Msg -> Model -> ( Model, Cmd Msg )
update msg model =
case msg of
FetchUser id ->
( { model | loading = True }
, Http.get
{ url = "/api/users/" ++ String.fromInt id
, expect = Http.expectJson GotUser userDecoder
}
)
GotUser (Ok user) ->
( model, saveUserCmd user )
GotUser (Err error) ->
( { model | error = Just error }, Cmd.none )
SaveUser user ->
( model, saveUserCmd user )
UserSaved (Ok ()) ->
( { model | saved = True }, Cmd.none )
UserSaved (Err error) ->
( { model | error = Just error }, Cmd.none )
-- Cmd constructors
saveUserCmd : User -> Cmd Msg
saveUserCmd user =
Http.post
{ url = "/api/users"
, body = Http.jsonBody (encodeUser user)
, expect = Http.expectWhatever UserSaved
}
Translation strategy:
- Extract all side effects → Cmd in update
- Define Msg for each async result
- Chain effects through Msg flow
- Use Task for sequential async operations
Common Pitfalls
1. Assuming Dynamic Typing
Problem: Treating Elm like dynamically-typed Clojure
-- ❌ WRONG: Can't have heterogeneous lists
users = [ { name = "Alice" }, { name = "Bob", age = 30 } ]
-- ERROR: Record fields must match
-- ✓ CORRECT: Define explicit type with Maybe for optional fields
type alias User =
{ name : String
, age : Maybe Int
}
users =
[ { name = "Alice", age = Nothing }
, { name = "Bob", age = Just 30 }
]
2. Forgetting to Handle All Cases
Problem: Incomplete pattern matching
-- ❌ WRONG: Missing Nothing case
getName : Maybe User -> String
getName maybeUser =
case maybeUser of
Just user ->
user.name
-- ERROR: Missing pattern: Nothing
-- ✓ CORRECT: Handle all cases
getName : Maybe User -> String
getName maybeUser =
case maybeUser of
Just user ->
user.name
Nothing ->
"Anonymous"
3. Trying to Mutate State
Problem: Thinking of Elm Model like Clojure atom
-- ❌ WRONG: Can't mutate model
update msg model =
model.count = model.count + 1 -- ERROR: No assignment in Elm
( model, Cmd.none )
-- ✓ CORRECT: Create new record with updated field
update msg model =
( { model | count = model.count + 1 }, Cmd.none )
4. Expecting Macros
Problem: Looking for Clojure-style macros
-- ❌ WRONG: No macros in Elm
-- Can't write:
-- defmacro myWhen [condition & body] ...
-- ✓ CORRECT: Use functions or code generation
myWhen : Bool -> (() -> a) -> Maybe a
myWhen condition thunk =
if condition then
Just (thunk ())
else
Nothing
-- Or just use if directly (more idiomatic)
5. Missing Type Annotations
Problem: Relying too much on type inference
-- ❌ BAD: No type signature
add x y =
x + y
-- Inferred type might not be what you want
-- ✓ GOOD: Explicit type signature
add : Int -> Int -> Int
add x y =
x + y
6. Forgetting Else Branch
Problem: Clojure when has no else; Elm if requires it
;; Clojure: when has implicit nil
(when condition
(do-thing))
-- ❌ WRONG: Missing else
if condition then
doThing
-- ERROR: if needs else branch
-- ✓ CORRECT: Provide else (even if unit)
if condition then
doThing
else
()
Tooling
| Tool | Purpose | Notes |
|---|---|---|
elm-format |
Auto-format Elm code | Like cljfmt |
elm-test |
Unit and property testing | Similar to test.check |
elm-review |
Custom linting rules | Like clj-kondo |
elm-json |
Package manager | Like lein or deps.edn |
elm-live |
Development server with hot reload | Like figwheel |
elm-analyse (deprecated) |
Code analysis | Use elm-review instead |
elm-codegen |
Generate Elm code | For repetitive boilerplate |
Examples
Example 1: Simple - Data Transformation
Before (Clojure):
;; Transform list of maps
(defn process-users [users]
(->> users
(filter :active)
(map :name)
(map str/upper-case)))
(process-users [{:name "alice" :active true}
{:name "bob" :active false}
{:name "charlie" :active true}])
;; => ("ALICE" "CHARLIE")
After (Elm):
-- Transform list of records
type alias User =
{ name : String
, active : Bool
}
processUsers : List User -> List String
processUsers users =
users
|> List.filter .active
|> List.map .name
|> List.map String.toUpper
-- Usage
processUsers
[ { name = "alice", active = True }
, { name = "bob", active = False }
, { name = "charlie", active = True }
]
-- => [ "ALICE", "CHARLIE" ]
Example 2: Medium - Error Handling with HTTP
Before (Clojure):
(require '[clj-http.client :as http]
'[cheshire.core :as json])
(defn fetch-user [id]
(try
(-> (http/get (str "https://api.example.com/users/" id))
:body
(json/parse-string true))
(catch Exception e
(println "Error fetching user:" (.getMessage e))
nil)))
(defn display-user [id]
(if-let [user (fetch-user id)]
(str "User: " (:name user))
"User not found"))
After (Elm):
import Http
import Json.Decode as Decode exposing (Decoder)
-- Model includes loading states
type alias Model =
{ user : RemoteData Http.Error User
}
type RemoteData error value
= NotAsked
| Loading
| Success value
| Failure error
-- Messages for async flow
type Msg
= FetchUser Int
| GotUser (Result Http.Error User)
-- User decoder
userDecoder : Decoder User
userDecoder =
Decode.map2 User
(Decode.field "name" Decode.string)
(Decode.field "email" Decode.string)
-- Update handles side effects
update : Msg -> Model -> ( Model, Cmd Msg )
update msg model =
case msg of
FetchUser id ->
( { model | user = Loading }
, Http.get
{ url = "https://api.example.com/users/" ++ String.fromInt id
, expect = Http.expectJson GotUser userDecoder
}
)
GotUser (Ok user) ->
( { model | user = Success user }, Cmd.none )
GotUser (Err error) ->
( { model | user = Failure error }, Cmd.none )
-- View renders based on state
view : Model -> Html Msg
view model =
case model.user of
NotAsked ->
button [ onClick (FetchUser 1) ] [ text "Load User" ]
Loading ->
div [] [ text "Loading..." ]
Success user ->
div [] [ text ("User: " ++ user.name) ]
Failure error ->
div [] [ text "User not found" ]
Example 3: Complex - Full Application with State Management
Before (Clojure):
(ns app.core
(:require [clojure.string :as str]))
;; Application state
(def state (atom {:users []
:search ""
:filter :all}))
;; State mutations
(defn add-user! [user]
(swap! state update :users conj user))
(defn set-search! [query]
(swap! state assoc :search query))
(defn set-filter! [filter-type]
(swap! state assoc :filter filter-type))
;; Pure logic
(defn matches-search? [user query]
(str/includes? (str/lower-case (:name user))
(str/lower-case query)))
(defn matches-filter? [user filter-type]
(case filter-type
:all true
:active (:active user)
:inactive (not (:active user))))
(defn filtered-users [users search filter-type]
(->> users
(filter #(matches-search? % search))
(filter #(matches-filter? % filter-type))))
;; Usage
(add-user! {:name "Alice" :active true})
(add-user! {:name "Bob" :active false})
(set-search! "ali")
(set-filter! :active)
(let [{:keys [users search filter]} @state]
(filtered-users users search filter))
;; => ({:name "Alice" :active true})
After (Elm):
module Main exposing (main)
import Browser
import Html exposing (Html, button, div, input, text)
import Html.Attributes exposing (placeholder, value)
import Html.Events exposing (onClick, onInput)
-- MODEL
type alias User =
{ name : String
, active : Bool
}
type FilterType
= All
| Active
| Inactive
type alias Model =
{ users : List User
, search : String
, filter : FilterType
}
init : () -> ( Model, Cmd Msg )
init _ =
( { users = []
, search = ""
, filter = All
}
, Cmd.none
)
-- UPDATE
type Msg
= AddUser User
| SetSearch String
| SetFilter FilterType
update : Msg -> Model -> ( Model, Cmd Msg )
update msg model =
case msg of
AddUser user ->
( { model | users = model.users ++ [ user ] }, Cmd.none )
SetSearch query ->
( { model | search = query }, Cmd.none )
SetFilter filterType ->
( { model | filter = filterType }, Cmd.none )
-- VIEW HELPERS (Pure logic)
matchesSearch : String -> User -> Bool
matchesSearch query user =
String.contains
(String.toLower query)
(String.toLower user.name)
matchesFilter : FilterType -> User -> Bool
matchesFilter filterType user =
case filterType of
All ->
True
Active ->
user.active
Inactive ->
not user.active
filteredUsers : Model -> List User
filteredUsers model =
model.users
|> List.filter (matchesSearch model.search)
|> List.filter (matchesFilter model.filter)
-- VIEW
view : Model -> Html Msg
view model =
div []
[ div []
[ input
[ placeholder "Search users..."
, value model.search
, onInput SetSearch
]
[]
]
, div []
[ button [ onClick (SetFilter All) ] [ text "All" ]
, button [ onClick (SetFilter Active) ] [ text "Active" ]
, button [ onClick (SetFilter Inactive) ] [ text "Inactive" ]
]
, div []
[ button
[ onClick (AddUser { name = "Alice", active = True }) ]
[ text "Add Alice" ]
, button
[ onClick (AddUser { name = "Bob", active = False }) ]
[ text "Add Bob" ]
]
, div []
(filteredUsers model
|> List.map viewUser
)
]
viewUser : User -> Html Msg
viewUser user =
div []
[ text (user.name ++ if user.active then " ✓" else " ✗")
]
-- MAIN
main : Program () Model Msg
main =
Browser.element
{ init = init
, update = update
, view = view
, subscriptions = \_ -> Sub.none
}
See Also
For more examples and patterns, see:
meta-convert-dev- Foundational patterns with cross-language examplesconvert-elm-clojure- Reverse conversion (Elm → Clojure)lang-clojure-dev- Clojure development patternslang-elm-dev- Elm development patterns
Cross-cutting pattern skills:
patterns-concurrency-dev- Async, state management across languagespatterns-serialization-dev- JSON, validation, encoding/decodingpatterns-metaprogramming-dev- Compile-time abstractions across languages