Claude Code Plugins

Community-maintained marketplace

Feedback

convert-python-fsharp

@aRustyDev/ai
0
0

Convert Python code to idiomatic F#. Use when migrating Python projects to F#, translating Python patterns to idiomatic F#, or refactoring Python codebases for type safety, functional programming, and .NET integration. Extends meta-convert-dev with Python-to-F# specific patterns.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name convert-python-fsharp
description Convert Python code to idiomatic F#. Use when migrating Python projects to F#, translating Python patterns to idiomatic F#, or refactoring Python codebases for type safety, functional programming, and .NET integration. Extends meta-convert-dev with Python-to-F# specific patterns.

Convert Python to F#

Convert Python code to idiomatic F#. This skill extends meta-convert-dev with Python-to-F# specific type mappings, idiom translations, and tooling for transforming dynamic, garbage-collected Python code into functional-first, statically-typed F# on the .NET platform.

This Skill Extends

  • meta-convert-dev - Foundational conversion patterns (APTV workflow, testing strategies)

For general concepts like the Analyze → Plan → Transform → Validate workflow, testing strategies, and common pitfalls, see the meta-skill first.

This Skill Adds

  • Type mappings: Python types → F# types (dynamic → static)
  • Idiom translations: Imperative/OOP Python → functional-first F#
  • Error handling: Exceptions → Result/Option types
  • Async patterns: asyncio → Async workflows
  • Type system: Duck typing → discriminated unions + type inference
  • Collection patterns: List comprehensions → List/Seq expressions + pipe operator

This Skill Does NOT Cover

  • General conversion methodology - see meta-convert-dev
  • Python language fundamentals - see lang-python-dev
  • F# language fundamentals - see lang-fsharp-dev
  • Reverse conversion (F# → Python) - see convert-fsharp-python or Fable.Python transpiler

Quick Reference

Python F# Notes
int int, int64, bigint F# int is 32-bit, Python has arbitrary precision
float float IEEE 754 double precision
bool bool Direct mapping
str string Immutable by default in both
bytes byte[] Byte array
list[T] List<'T> F# lists are immutable, linked
list[T] (mutable) ResizeArray<'T> .NET List
tuple 'T * 'U Tuple syntax
dict[K, V] Map<'K, 'V> Immutable map
dict[K, V] (mutable) Dictionary<'K, 'V> .NET Dictionary
set[T] Set<'T> Immutable set
None None (in Option<'T>) Explicit nullable
Union[T, U] Discriminated union Tagged union
Callable[[Args], Ret] 'Args -> 'Ret Function type
async def async { } Async computation expression
@dataclass type Record = { } F# records
try/except Result<'T, 'E> or try/with Railway-oriented programming preferred

When Converting Code

  1. Analyze source thoroughly before writing target
  2. Map types first - create type equivalence table
  3. Embrace immutability - F# defaults to immutable; use mutable sparingly
  4. Adopt functional patterns - don't write "Python code in F# syntax"
  5. Use type inference - F# infers most types; annotate only when needed
  6. Railway-oriented programming - prefer Result/Option over exceptions
  7. Leverage pipe operator - chain operations with |>
  8. Test equivalence - same inputs → same outputs

Type System Mapping

Primitive Types

Python F# Notes
int int 32-bit signed integer
int (large) int64 64-bit signed integer
int (arbitrary) bigint Arbitrary precision (like Python)
float float 64-bit floating point (F# float = .NET Double)
bool bool Direct mapping
str string UTF-16 immutable string (.NET)
bytes byte[] Byte array
bytearray ResizeArray<byte> Mutable byte array
None Option.None Must be wrapped in Option<'T>
... (Ellipsis) - No direct equivalent

Critical Note on Integers: Python's int type has arbitrary precision and never overflows. F# int is 32-bit (like C#). Use bigint for Python-like arbitrary precision, or int64 for most cases.

Collection Types

Python F# Notes
list[T] List<'T> F# list is immutable, singly-linked
list[T] (mutable) ResizeArray<'T> .NET List<T> (mutable, growable)
tuple 'T * 'U * ... Fixed-size, immutable
dict[K, V] Map<'K, 'V> Immutable map (tree-based)
dict[K, V] (mutable) Dictionary<'K, 'V> .NET Dictionary (hash-based)
set[T] Set<'T> Immutable set
set[T] (mutable) HashSet<'T> .NET HashSet
frozenset[T] Set<'T> Immutable by default in F#
collections.deque Queue<'T> .NET Queue
collections.OrderedDict Use List<'K * 'V> Preserve insertion order
collections.defaultdict Map + Map.tryFind Use defaultArg pattern
collections.Counter Map<'T, int> Count occurrences

Composite Types

Python F# Notes
class (data) type Record = { } F# records are immutable by default
class (behavior) type + member methods OOP supported but not idiomatic
@dataclass type Record = { } Records with structural equality
typing.Protocol Interface Structural typing → nominal in F#
typing.TypedDict type Record = { } Named fields
typing.NamedTuple type Record = { } Prefer records over tuples
enum.Enum Discriminated union `type Color = Red
typing.Literal["a", "b"] Discriminated union `type Status = Active
typing.Union[T, U] `type Result = A of 'T B of 'U`
typing.Optional[T] Option<'T> Explicit nullable
typing.Callable[[Args], Ret] 'Args -> 'Ret Function type
typing.Generic[T] 'T Generic type parameter

Type Annotations → Generics

Python F# Notes
def f(x: T) -> T let f (x: 'T) : 'T = x Unconstrained generic (usually inferred)
def f(x: Iterable[T]) let f (x: seq<'T>) = ... F# seq<'T> is lazy
def f(x: Sequence[T]) let f (x: 'T list) = ... Or 'T[] for arrays
x: Any Avoid - use generics obj exists but discouraged
x: object obj Root type, but use generics instead

Idiom Translation

Pattern 1: None Handling (Optional Chaining)

Python:

# Optional chaining with walrus operator
if user := get_user(user_id):
    name = user.name
else:
    name = "Anonymous"

# Or simpler
name = user.name if user else "Anonymous"

F#:

// Option pattern matching
let name =
    match get_user user_id with
    | Some user -> user.Name
    | None -> "Anonymous"

// Or with defaultArg
let name =
    get_user user_id
    |> Option.map (fun u -> u.Name)
    |> Option.defaultValue "Anonymous"

Why this translation:

  • Python uses truthiness while F# uses explicit Option<'T>
  • F# pattern matching is exhaustive (compiler ensures all cases handled)
  • Pipe operator |> chains operations left-to-right (like UNIX pipes)

Pattern 2: List Comprehensions → List/Seq Expressions

Python:

# List comprehension
squared_evens = [x * x for x in numbers if x % 2 == 0]

# Generator expression
total = sum(x * x for x in numbers if x % 2 == 0)

F#:

// List expression
let squaredEvens =
    [ for x in numbers do
        if x % 2 = 0 then
          x * x ]

// Or with pipe operator (more idiomatic)
let squaredEvens =
    numbers
    |> List.filter (fun x -> x % 2 = 0)
    |> List.map (fun x -> x * x)

// Seq for lazy evaluation (like generator)
let total =
    numbers
    |> Seq.filter (fun x -> x % 2 = 0)
    |> Seq.map (fun x -> x * x)
    |> Seq.sum

Why this translation:

  • F# has both list expressions (like comprehensions) and pipe chains
  • Pipe operator style is more composable and idiomatic
  • Seq<'T> is lazy (like Python generators), List<'T> is eager

Pattern 3: Dictionary/Map Operations

Python:

# Create dictionary
counts = {"apple": 5, "banana": 3}

# Add/update
counts["orange"] = 2
counts["apple"] += 1

# Safe get with default
count = counts.get("grape", 0)

F#:

// Create immutable map
let counts =
    Map.ofList [
        "apple", 5
        "banana", 3
    ]

// Add/update (returns new map)
let counts2 = counts |> Map.add "orange" 2
let counts3 = counts2 |> Map.add "apple" 6

// Safe get with default
let count = counts |> Map.tryFind "grape" |> Option.defaultValue 0

// Or for mutable dictionary (.NET)
let mutableCounts = System.Collections.Generic.Dictionary<string, int>()
mutableCounts.["apple"] <- 5
mutableCounts.["apple"] <- mutableCounts.["apple"] + 1

Why this translation:

  • F# defaults to immutable Map<'K, 'V> (functional style)
  • Operations return new maps rather than mutating in-place
  • Can use .NET Dictionary for mutable operations when needed

Pattern 4: Class → Record + Functions

Python:

from dataclasses import dataclass

@dataclass
class Point:
    x: float
    y: float

    def distance_from_origin(self) -> float:
        return (self.x ** 2 + self.y ** 2) ** 0.5

F#:

// F# record type
type Point = {
    X: float
    Y: float
}

// Standalone function (idiomatic F#)
let distanceFromOrigin point =
    sqrt (point.X ** 2.0 + point.Y ** 2.0)

// Or as member method if needed
type Point with
    member this.DistanceFromOrigin() =
        sqrt (this.X ** 2.0 + this.Y ** 2.0)

// Usage
let p = { X = 3.0; Y = 4.0 }
let dist = distanceFromOrigin p  // Functional style
let dist2 = p.DistanceFromOrigin()  // OOP style

Why this translation:

  • F# records provide structural equality automatically
  • Separating data (record) from functions is more functional
  • Member methods available but less idiomatic than standalone functions

Pattern 5: Iteration and Loops → Recursion/Higher-Order Functions

Python:

# Imperative loop
def factorial(n: int) -> int:
    result = 1
    for i in range(1, n + 1):
        result *= i
    return result

F#:

// Recursive function (idiomatic F#)
let rec factorial n =
    match n with
    | 0 | 1 -> 1
    | _ -> n * factorial (n - 1)

// Or tail-recursive (better for large n)
let factorial n =
    let rec loop acc n =
        match n with
        | 0 | 1 -> acc
        | _ -> loop (acc * n) (n - 1)
    loop 1 n

// Or using fold (most functional)
let factorial n =
    [1..n] |> List.fold (*) 1

Why this translation:

  • F# favors recursion and higher-order functions over loops
  • Tail recursion is optimized by F# compiler
  • fold, map, filter express intent more clearly than loops

Pattern 6: Context Managers → use Binding

Python:

# Context manager
with open("file.txt", "r") as f:
    content = f.read()
# f is automatically closed

F#:

// use binding (implements IDisposable)
use file = System.IO.File.OpenText("file.txt")
let content = file.ReadToEnd()
// file is automatically disposed at end of scope

// Or with explicit scope
let content =
    use file = System.IO.File.OpenText("file.txt")
    file.ReadToEnd()

Why this translation:

  • F# use binding calls Dispose() automatically
  • Both Python and F# ensure resource cleanup
  • F# leverages .NET's IDisposable pattern

Error Handling

Python Exceptions → F# Result Type

Python's exception model:

def divide(a: float, b: float) -> float:
    if b == 0:
        raise ValueError("Cannot divide by zero")
    return a / b

try:
    result = divide(10, 0)
except ValueError as e:
    print(f"Error: {e}")
    result = 0

F# Result type (idiomatic):

// Define error type
type MathError =
    | DivideByZero
    | InvalidInput of string

// Function returns Result<'T, 'E>
let divide a b =
    if b = 0.0 then
        Error DivideByZero
    else
        Ok (a / b)

// Pattern match on result
let result =
    match divide 10.0 0.0 with
    | Ok value -> value
    | Error DivideByZero ->
        printfn "Error: Cannot divide by zero"
        0.0
    | Error (InvalidInput msg) ->
        printfn "Error: %s" msg
        0.0

F# with try/with (when needed):

// F# also supports exceptions for interop
let result =
    try
        divide 10.0 0.0
    with
    | :? System.DivideByZeroException as ex ->
        printfn "Error: %s" ex.Message
        0.0

Railway-Oriented Programming:

// Chaining operations that might fail
let validateAge age =
    if age >= 0 && age <= 150 then
        Ok age
    else
        Error "Age out of range"

let validateName name =
    if String.IsNullOrWhiteSpace(name) then
        Error "Name cannot be empty"
    else
        Ok name

// Compose validations
type Person = { Name: string; Age: int }

let createPerson name age =
    match validateName name, validateAge age with
    | Ok n, Ok a -> Ok { Name = n; Age = a }
    | Error e, _ -> Error e
    | _, Error e -> Error e

// Or with Result.bind
let createPerson2 name age =
    validateName name
    |> Result.bind (fun n ->
        validateAge age
        |> Result.map (fun a -> { Name = n; Age = a }))

Why this approach:

  • Result<'T, 'E> makes errors explicit in the type system
  • Errors are values, not control flow
  • Railway-oriented programming chains operations cleanly
  • Compiler enforces error handling

Concurrency Patterns

Python asyncio → F# Async Workflows

Python:

import asyncio

async def fetch_data(url: str) -> str:
    await asyncio.sleep(1)  # Simulate I/O
    return f"Data from {url}"

async def process_urls(urls: list[str]) -> list[str]:
    tasks = [fetch_data(url) for url in urls]
    results = await asyncio.gather(*tasks)
    return results

# Run
urls = ["url1", "url2", "url3"]
results = asyncio.run(process_urls(urls))

F#:

open System

// Async workflow
let fetchData url = async {
    do! Async.Sleep 1000  // Simulate I/O
    return sprintf "Data from %s" url
}

let processUrls urls = async {
    let! results =
        urls
        |> List.map fetchData
        |> Async.Parallel
    return results
}

// Run
let urls = ["url1"; "url2"; "url3"]
let results = processUrls urls |> Async.RunSynchronously

Why this translation:

  • F# async { } is a computation expression (similar to async/await)
  • do! is like await without a return value
  • let! is like await with a return value
  • Async.Parallel is like asyncio.gather

Threading Models

Python F# Notes
threading.Thread System.Threading.Thread Direct .NET interop
asyncio async { } Async workflows
multiprocessing - F# uses .NET Task Parallel Library
concurrent.futures Task<'T> .NET Tasks

F# Task vs Async:

// F# Async (native)
let fetchAsync url = async {
    do! Async.Sleep 1000
    return "data"
}

// .NET Task (for interop)
open System.Threading.Tasks

let fetchTask url = task {
    do! Task.Delay 1000
    return "data"
}

// Convert between them
let asyncToTask = fetchAsync "url" |> Async.StartAsTask
let taskToAsync = fetchTask "url" |> Async.AwaitTask

Memory & Garbage Collection

Both Python and F# use garbage collection, making this conversion simpler than Python → Rust.

Aspect Python F#
Memory management Reference counting + GC .NET GC (generational)
Mutability Mutable by default Immutable by default
String interning Yes Yes (.NET)
Object lifetime GC managed GC managed

Key difference: F# defaults to immutability, which reduces bugs and makes concurrency safer.


Common Pitfalls

  1. Mutability assumptions: Python is mutable by default; F# is immutable by default

    • Use mutable keyword or ResizeArray/Dictionary for mutable state
  2. List performance: F# List<'T> is a linked list, not an array

    • Use ResizeArray<'T> (.NET List<T>) for random access
    • Use Array for fixed-size collections
  3. Integer overflow: Python int never overflows; F# int is 32-bit

    • Use bigint for arbitrary precision
    • Use Checked context for overflow detection
  4. String indexing: Python uses 0-based indexing; F# strings are .NET strings

    • F# strings are UTF-16 (not UTF-8 like Python 3)
    • Indexing: s.[0] gets a char, not a string
  5. Null values: Python has None; F# discourages null

    • Use Option<'T> instead of nullable references
    • Only .NET interop types can be null
  6. Whitespace significance: Python uses indentation; F# uses indentation but less strictly

    • F# requires proper indentation in computation expressions
    • Use #light "off" to disable (not recommended)
  7. Function application: Python uses f(x, y); F# uses f x y

    • Parentheses only needed for grouping: f (x + 1) y
    • Tupled arguments: f(x, y) is a single tuple argument

Tooling

Tool Purpose Notes
dotnet CLI Build, run, test F# projects dotnet new console -lang F#
Ionide F# support for VS Code Syntax, IntelliSense, debugging
JetBrains Rider Full-featured F# IDE Commercial, cross-platform
FSI (F# Interactive) REPL for F# Interactive development like Python REPL
Paket Alternative package manager More control than NuGet
FAKE F# build automation Like Make/Rake but in F#
FsCheck Property-based testing Like Python's Hypothesis
Expecto F# test framework Lightweight, functional
Fable.Python F# → Python transpiler Compile F# to Python
FSharp.Data Type providers for CSV/JSON/XML Strongly-typed data access

Examples

Example 1: Simple - List Processing

Before (Python):

def filter_and_square(numbers: list[int]) -> list[int]:
    """Filter even numbers and square them."""
    return [x * x for x in numbers if x % 2 == 0]

result = filter_and_square([1, 2, 3, 4, 5, 6])
print(result)  # [4, 16, 36]

After (F#):

// Type-inferred function
let filterAndSquare numbers =
    numbers
    |> List.filter (fun x -> x % 2 = 0)
    |> List.map (fun x -> x * x)

let result = filterAndSquare [1; 2; 3; 4; 5; 6]
printfn "%A" result  // [4; 16; 36]

Example 2: Medium - Error Handling + Options

Before (Python):

from typing import Optional

def find_user(user_id: int, users: list[dict]) -> Optional[dict]:
    """Find user by ID."""
    for user in users:
        if user["id"] == user_id:
            return user
    return None

def get_user_name(user_id: int, users: list[dict]) -> str:
    """Get user name, or 'Unknown' if not found."""
    user = find_user(user_id, users)
    if user:
        return user["name"]
    else:
        return "Unknown"

users = [
    {"id": 1, "name": "Alice"},
    {"id": 2, "name": "Bob"}
]

print(get_user_name(1, users))  # Alice
print(get_user_name(99, users))  # Unknown

After (F#):

// Define types
type User = { Id: int; Name: string }

// Find user (returns Option)
let findUser userId users =
    users
    |> List.tryFind (fun user -> user.Id = userId)

// Get user name with default
let getUserName userId users =
    findUser userId users
    |> Option.map (fun user -> user.Name)
    |> Option.defaultValue "Unknown"

// Data
let users = [
    { Id = 1; Name = "Alice" }
    { Id = 2; Name = "Bob" }
]

printfn "%s" (getUserName 1 users)   // Alice
printfn "%s" (getUserName 99 users)  // Unknown

Example 3: Complex - Async Processing with Error Handling

Before (Python):

import asyncio
from typing import Union, List
from dataclasses import dataclass

@dataclass
class User:
    id: int
    name: str
    email: str

async def fetch_user(user_id: int) -> Union[User, str]:
    """Fetch user asynchronously. Returns User or error message."""
    await asyncio.sleep(0.1)  # Simulate network delay

    if user_id < 0:
        return "Invalid user ID"
    elif user_id > 1000:
        return "User not found"
    else:
        return User(
            id=user_id,
            name=f"User{user_id}",
            email=f"user{user_id}@example.com"
        )

async def process_users(user_ids: List[int]) -> tuple[List[User], List[str]]:
    """Process multiple users, separating successes and errors."""
    tasks = [fetch_user(uid) for uid in user_ids]
    results = await asyncio.gather(*tasks)

    users = []
    errors = []

    for result in results:
        if isinstance(result, User):
            users.append(result)
        else:
            errors.append(result)

    return users, errors

# Run
user_ids = [1, -5, 42, 9999]
users, errors = asyncio.run(process_users(user_ids))

print(f"Fetched {len(users)} users")
for user in users:
    print(f"  - {user.name}: {user.email}")

print(f"Encountered {len(errors)} errors")
for error in errors:
    print(f"  - {error}")

After (F#):

open System

// Define types
type User = {
    Id: int
    Name: string
    Email: string
}

type FetchError =
    | InvalidUserId
    | UserNotFound

// Async function returning Result
let fetchUser userId = async {
    do! Async.Sleep 100  // Simulate network delay

    if userId < 0 then
        return Error InvalidUserId
    elif userId > 1000 then
        return Error UserNotFound
    else
        return Ok {
            Id = userId
            Name = sprintf "User%d" userId
            Email = sprintf "user%d@example.com" userId
        }
}

// Process multiple users
let processUsers userIds = async {
    let! results =
        userIds
        |> List.map fetchUser
        |> Async.Parallel

    let users, errors =
        results
        |> Array.partition (function Ok _ -> true | Error _ -> false)
        |> fun (oks, errs) ->
            let users = oks |> Array.choose (function Ok u -> Some u | _ -> None)
            let errors = errs |> Array.choose (function Error e -> Some e | _ -> None)
            (users, errors)

    return (users, errors)
}

// Run
let userIds = [1; -5; 42; 9999]
let users, errors = processUsers userIds |> Async.RunSynchronously

printfn "Fetched %d users" (Array.length users)
for user in users do
    printfn "  - %s: %s" user.Name user.Email

printfn "Encountered %d errors" (Array.length errors)
for error in errors do
    let msg =
        match error with
        | InvalidUserId -> "Invalid user ID"
        | UserNotFound -> "User not found"
    printfn "  - %s" msg

Key differences:

  • F# uses Result<'T, 'E> instead of Union[T, str] for error handling
  • Discriminated unions for error types (not string messages)
  • Pattern matching with match for exhaustive handling
  • Async.Parallel for concurrent operations
  • Pipe operator chains for data transformations
  • Type inference removes most type annotations

See Also

For more examples and patterns, see:

  • meta-convert-dev - Foundational patterns with cross-language examples
  • convert-python-rust - Python → Rust conversion (similar dynamic → static transition)
  • convert-typescript-python - TypeScript → Python (reverse static → dynamic)
  • lang-python-dev - Python development patterns
  • lang-fsharp-dev - F# development patterns

Cross-cutting pattern skills (for areas not fully covered by lang-*-dev):

  • patterns-concurrency-dev - Async, channels, threads across languages
  • patterns-serialization-dev - JSON, validation, struct tags across languages
  • patterns-metaprogramming-dev - Decorators, macros, annotations across languages

External resources: