| name | convert-scala-roc |
| description | Convert Scala code to idiomatic Roc. Use when migrating Scala projects to Roc, translating JVM/FP patterns to pure functional patterns, or refactoring Scala codebases. Extends meta-convert-dev with Scala-to-Roc specific patterns. |
Convert Scala to Roc
Convert Scala code to idiomatic Roc. This skill extends meta-convert-dev with Scala-to-Roc specific type mappings, idiom translations, and architectural patterns for moving from JVM-based functional programming to platform-based pure functional programming.
This Skill Extends
meta-convert-dev- Foundational conversion patterns (APTV workflow, testing strategies)
For general concepts like the Analyze → Plan → Transform → Validate workflow, testing strategies, and common pitfalls, see the meta-skill first.
This Skill Adds
- Type mappings: Scala JVM types → Roc static types
- Paradigm translation: Object-functional hybrid → Pure functional with platform separation
- Idiom translations: Scala patterns → Roc functional patterns
- Error handling: Exceptions + Try/Either → Result types
- Concurrency: Futures/Actors → Platform Tasks
- Module system: Scala packages/objects → Roc platform/application architecture
- Type classes: Scala implicits/given → Roc abilities
This Skill Does NOT Cover
- General conversion methodology - see
meta-convert-dev - Scala language fundamentals - see
lang-scala-dev - Roc language fundamentals - see
lang-roc-dev - Reverse conversion (Roc → Scala) - see
convert-roc-scala
Quick Reference
| Scala | Roc | Notes |
|---|---|---|
Int |
I64 / I32 |
Specify bit width |
Long |
I64 |
64-bit signed |
Double |
F64 |
64-bit float |
Boolean |
Bool |
Direct mapping |
String |
Str |
UTF-8 strings |
Option[A] |
[Some A, None] |
Tag union |
Either[L, R] |
Result R L |
Note: order swapped |
Try[A] |
Result A [Err Str] |
Exception → error tag |
List[A] |
List A |
Immutable list |
Vector[A] |
List A |
Roc List is efficient |
Set[A] |
Set A |
Unique values |
Map[K, V] |
Dict K V |
Key-value map |
case class |
Record { } |
Structural records |
sealed trait |
Tag union [] |
Sum types |
trait (interface) |
Ability | Type class pattern |
Future[A] |
Task A err |
Platform-provided |
Unit |
{} |
Empty record |
When Converting Code
- Analyze JVM semantics before writing Roc
- Identify effect boundaries - separate pure logic from I/O
- Map object hierarchies to data - classes become records, inheritance becomes composition
- Redesign for immutability - Scala's var becomes Roc's pure transformation
- Extract pure functions - separate computation from effects
- Test equivalence - verify behavior matches despite architectural differences
Paradigm Translation
Mental Model Shift: Object-Functional → Pure Functional + Platform
| Scala Concept | Roc Approach | Key Insight |
|---|---|---|
| Class with state | Record + functions operating on record | Data and behavior separated, no hidden state |
| Inheritance | Composition with records | Favor records and tag unions over class hierarchies |
| var (mutation) | New value creation | Explicit transformation, not mutation |
| Companion object | Module with functions | Namespace for related functions |
| Implicit parameter | Ability constraint | Type class pattern via abilities |
| Future | Platform Task | Effects are platform capability |
| Actor | Platform concern | Concurrency handled by host |
| Singleton object | Module-level constants | Global state avoided, use module scope |
| Trait mixing | Record composition | Combine records, not behaviors |
Functional Paradigm Alignment
| Scala Pattern | Roc Pattern | Conceptual Translation |
|---|---|---|
for comprehension |
Pipeline |> or nested when |
Monadic composition becomes explicit |
| Pattern matching | when expression |
Similar syntax, structural matching |
| Case class | Record type | Structural types, automatic equality |
| Sealed trait ADT | Tag union | Sum types with exhaustiveness |
| Implicit conversion | No equivalent | Explicit conversions preferred |
| Higher-order function | Function types | Direct support, same concept |
Type System Mapping
Primitive Types
| Scala | Roc | Notes |
|---|---|---|
Byte |
I8 |
8-bit signed |
Short |
I16 |
16-bit signed |
Int |
I32 |
32-bit signed (common) |
Long |
I64 |
64-bit signed |
Float |
F32 |
32-bit float |
Double |
F64 |
64-bit float |
Boolean |
Bool |
Direct mapping |
Char |
U32 |
Unicode scalar value |
String |
Str |
UTF-8 strings |
Unit |
{} |
Empty record |
Nothing |
- | No direct equivalent |
Any |
- | Avoid; use tag unions |
AnyVal |
- | Not needed in Roc |
AnyRef |
- | No reference types |
Collection Types
| Scala | Roc | Notes |
|---|---|---|
List[A] |
List A |
Immutable, efficient |
Vector[A] |
List A |
Roc List performs well |
Array[A] |
List A |
No mutable arrays |
Set[A] |
Set A |
Unique values |
Map[K, V] |
Dict K V |
Hash + Eq required for K |
Seq[A] |
List A |
General sequence → List |
IndexedSeq[A] |
List A |
Use List for indexing |
LazyList[A] |
Generator pattern | Lazy evaluation via functions |
Option[A] |
[Some A, None] |
Optional values |
Either[L, R] |
Result R L |
Note: order reversed |
Try[A] |
Result A [Err Str] |
Exception handling |
Composite Types
| Scala | Roc | Notes |
|---|---|---|
case class User(...) |
User : { name : Str, ... } |
Records are structural |
sealed trait Color |
Color : [Red, Green, Blue] |
Sum types (ADTs) |
trait Service |
Ability or module | Depends on use case |
object Utils |
interface Utils |
Module with functions |
(A, B) |
(A, B) |
Tuples map directly |
(A, B, C) |
(A, B, C) |
Multi-element tuples |
Generics [A] |
Type parameters a |
Similar concept |
Variance [+A] |
- | Roc doesn't need variance |
Function Types
| Scala | Roc | Notes |
|---|---|---|
() => R |
{} -> R |
Zero-arg function |
A => R |
A -> R |
Single arg |
(A, B) => R |
A, B -> R |
Multiple args |
Function1[A, B] |
A -> B |
Function type |
A => B => C |
A -> (B -> C) |
Curried functions |
By-name => A |
{} -> A |
Lazy evaluation |
Idiom Translation
Pattern 1: Simple Function and Case Class
Scala:
case class User(name: String, age: Int, email: String)
object User {
def create(name: String, age: Int, email: String): User = {
User(name, age, email)
}
def greet(user: User): String = {
s"Hello, ${user.name}! You are ${user.age} years old."
}
}
Roc:
interface User
exposes [User, create, greet]
imports []
User : {
name : Str,
age : U32,
email : Str,
}
create : Str, U32, Str -> User
create = \name, age, email ->
{ name, age, email }
greet : User -> Str
greet = \{ name, age } ->
"Hello, \(name)! You are \(Num.toStr(age)) years old."
Why this translation:
- Scala case class → Roc record type
- Companion object → Roc interface (module)
- String interpolation syntax differs
- Type inference works in both
Pattern 2: Sealed Trait ADT with Pattern Matching
Scala:
sealed trait Result[+A]
case class Success[A](value: A) extends Result[A]
case class Failure(error: String) extends Result[Nothing]
case object Pending extends Result[Nothing]
def handle[A](result: Result[A]): String = result match {
case Success(value) => s"Got: $value"
case Failure(error) => s"Error: $error"
case Pending => "Waiting..."
}
Roc:
Result a : [Success a, Failure Str, Pending]
handle : Result a -> Str where a implements Inspect
handle = \result ->
when result is
Success(value) -> "Got: \(Inspect.toStr(value))"
Failure(error) -> "Error: \(error)"
Pending -> "Waiting..."
Why this translation:
- Sealed trait → Tag union
- Case classes → Tags with payloads
- Case object → Tag without payload
- Pattern matching syntax very similar
- Roc enforces exhaustiveness at compile time
Pattern 3: Option Handling
Scala:
def findUser(id: Int, users: List[User]): Option[User] = {
users.find(_.id == id)
}
def getEmail(maybeUser: Option[User]): String = {
maybeUser.map(_.email).getOrElse("no email")
}
// For-comprehension
def combineUsers(id1: Int, id2: Int): Option[(User, User)] = {
for {
user1 <- findUser(id1, users)
user2 <- findUser(id2, users)
} yield (user1, user2)
}
Roc:
findUser : U64, List User -> [Some User, None]
findUser = \id, users ->
users
|> List.findFirst(\user -> user.id == id)
|> Result.map(Some)
|> Result.withDefault(None)
getEmail : [Some User, None] -> Str
getEmail = \maybeUser ->
when maybeUser is
Some({ email }) -> email
None -> "no email"
# Nested when for comprehension-like flow
combineUsers : U64, U64, List User -> [Some (User, User), None]
combineUsers = \id1, id2, users ->
when findUser(id1, users) is
Some(user1) ->
when findUser(id2, users) is
Some(user2) -> Some((user1, user2))
None -> None
None -> None
Why this translation:
- Scala Option → Roc tag union
[Some a, None] map/getOrElse→ pattern matching or Result helpers- For-comprehension → nested
whenexpressions - More verbose but explicit
Pattern 4: List Processing
Scala:
val numbers = List(1, 2, 3, 4, 5)
val doubled = numbers.map(_ * 2)
val evens = numbers.filter(_ % 2 == 0)
val sum = numbers.foldLeft(0)(_ + _)
// List comprehension
val squares = for {
x <- numbers
if x % 2 == 0
} yield x * x
Roc:
numbers = [1, 2, 3, 4, 5]
doubled = List.map(numbers, \n -> n * 2)
evens = List.keepIf(numbers, \n -> n % 2 == 0)
sum = List.walk(numbers, 0, Num.add)
# List comprehension becomes pipeline
squares = numbers
|> List.keepIf(\x -> x % 2 == 0)
|> List.map(\x -> x * x)
Why this translation:
- Similar higher-order functions
foldLeft→List.walkfilter→List.keepIf- For-comprehension → pipeline with map/filter
- Roc uses explicit function composition
Pattern 5: Error Handling with Either/Try
Scala:
def divide(a: Int, b: Int): Either[String, Int] = {
if (b == 0) Left("Division by zero")
else Right(a / b)
}
def calculate(a: Int, b: Int, c: Int): Either[String, Int] = {
for {
x <- divide(a, b)
y <- divide(x, c)
} yield y
}
// Try for exceptions
import scala.util.{Try, Success, Failure}
def parseInt(s: String): Try[Int] = Try(s.toInt)
def safeParse(s: String): Option[Int] = parseInt(s).toOption
Roc:
divide : I64, I64 -> Result I64 [DivByZero]
divide = \a, b ->
if b == 0 then
Err(DivByZero)
else
Ok(a // b)
calculate : I64, I64, I64 -> Result I64 [DivByZero]
calculate = \a, b, c ->
x = divide!(a, b)
y = divide!(x, c)
Ok(y)
# Try equivalent
parseInt : Str -> Result I64 [ParseError]
parseInt = \s ->
when Str.toI64(s) is
Ok(n) -> Ok(n)
Err(_) -> Err(ParseError)
safeParse : Str -> [Some I64, None]
safeParse = \s ->
when parseInt(s) is
Ok(n) -> Some(n)
Err(_) -> None
Why this translation:
Either[L, R]→Result ok err(note: order reversed)- For-comprehension → try operator
!for early returns Try→Resultwith explicit error typestoOption→ pattern matching to convert Result → Option-like tag union
Pattern 6: Trait and Implicits to Abilities
Scala:
trait Show[A] {
def show(a: A): String
}
object Show {
implicit val intShow: Show[Int] = (a: Int) => a.toString
implicit val stringShow: Show[String] = (a: String) => s"'$a'"
}
def print[A](a: A)(implicit s: Show[A]): Unit = {
println(s.show(a))
}
print(42) // Uses intShow
print("hello") // Uses stringShow
Roc:
# Roc abilities are automatic for basic types
# For custom behavior, use functions with ability constraints
toString : a -> Str where a implements Inspect
toString = \value ->
Inspect.toStr(value)
# Usage - Inspect is automatically implemented
expect toString(42) == "42"
expect toString("hello") == "\"hello\""
# For custom types, abilities are derived automatically
User : { name : Str, age : U32 }
user = { name: "Alice", age: 30 }
expect Inspect.toStr(user) == "{ name: \"Alice\", age: 30 }"
Why this translation:
- Scala trait → Roc ability
- Implicit instances → automatic derivation for records/tags
- Type class pattern → ability constraint
where a implements Ability - Roc has fewer built-in abilities but they're more automatic
Pattern 7: Higher-Order Functions and Currying
Scala:
def applyTwice[A](f: A => A, x: A): A = f(f(x))
def add(a: Int)(b: Int): Int = a + b
val add5 = add(5) _
def compose[A, B, C](f: B => C, g: A => B): A => C = {
a => f(g(a))
}
Roc:
applyTwice : (a -> a), a -> a
applyTwice = \f, x ->
f(f(x))
# Currying in Roc requires explicit function return
add : I64 -> (I64 -> I64)
add = \a ->
\b -> a + b
add5 = add(5)
compose : (b -> c), (a -> b) -> (a -> c)
compose = \f, g ->
\a -> f(g(a))
Why this translation:
- Higher-order functions work similarly
- Currying must be explicit in Roc (return a function)
- Function composition same concept
- Type signatures use arrows consistently
Pattern 8: Records with Update
Scala:
case class Config(
host: String,
port: Int,
timeout: Int = 5000,
retries: Int = 3
)
val config = Config("localhost", 8080)
val updated = config.copy(port = 9090, retries = 5)
Roc:
Config : {
host : Str,
port : U16,
timeout : U32,
retries : U32,
}
defaultConfig : Str, U16 -> Config
defaultConfig = \host, port ->
{
host,
port,
timeout: 5000,
retries: 3,
}
config = defaultConfig("localhost", 8080)
updated = { config &
port: 9090,
retries: 5,
}
Why this translation:
- Case class
copy→ Roc record update{ record & field: value } - Default parameters → constructor function with defaults
- Immutable updates work similarly
- Roc update syntax is explicit
Concurrency Patterns
Scala Future vs Roc Task
Scala uses Futures for async computation on the JVM. Roc delegates all concurrency to the platform.
Scala:
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
def fetchUser(id: Int): Future[User] = Future {
// Async operation
database.query(s"SELECT * FROM users WHERE id = $id")
}
def fetchPosts(userId: Int): Future[List[Post]] = Future {
database.query(s"SELECT * FROM posts WHERE author = $userId")
}
// Composition
val result: Future[(User, List[Post])] = for {
user <- fetchUser(123)
posts <- fetchPosts(user.id)
} yield (user, posts)
// Parallel execution
val users: Future[List[User]] = Future.sequence(
List(1, 2, 3).map(fetchUser)
)
Roc:
import pf.Task exposing [Task]
import pf.Database
# Platform provides Task type
fetchUser : U64 -> Task User [DbErr]
fetchUser = \id ->
Database.query!("SELECT * FROM users WHERE id = \(Num.toStr(id))")
fetchPosts : U64 -> Task (List Post) [DbErr]
fetchPosts = \userId ->
Database.query!("SELECT * FROM posts WHERE author = \(Num.toStr(userId))")
# Sequential composition using !
result : Task (User, List Post) [DbErr]
result =
user = fetchUser!(123)
posts = fetchPosts!(user.id)
Task.ok((user, posts))
# Platform provides parallel primitives
users : Task (List User) [DbErr]
users =
Task.sequence([
fetchUser(1),
fetchUser(2),
fetchUser(3),
])
Why this translation:
- Scala Future → Roc platform Task
- For-comprehension → try operator
!with Task - ExecutionContext → handled by platform
- Parallel execution → platform-provided primitives
- Roc apps stay pure, platform handles concurrency
Scala Actors (Akka) vs Roc Platform
Scala (Akka Typed):
import akka.actor.typed._
import akka.actor.typed.scaladsl.Behaviors
sealed trait CounterMsg
case object Increment extends CounterMsg
case class GetCount(replyTo: ActorRef[Int]) extends CounterMsg
def counter(count: Int): Behavior[CounterMsg] =
Behaviors.receive { (context, message) =>
message match {
case Increment =>
counter(count + 1)
case GetCount(replyTo) =>
replyTo ! count
Behaviors.same
}
}
Roc:
# Roc has no built-in actors
# Design as pure state machine
State : I64
init : State
init = 0
increment : State -> State
increment = \count ->
count + 1
getCount : State -> I64
getCount = \count ->
count
# Platform would provide state management if needed
# Application code remains pure
Why this translation:
- Actors → pure state functions
- Message passing → function parameters
- State mutation → new state returned
- Platform handles concurrency, not application
- Simpler mental model: data transformation, not processes
Module System Translation
Scala Package/Object → Roc Interface
Scala:
package com.example.users
case class User(id: Int, name: String, email: String)
object UserService {
def create(name: String, email: String): User = {
val id = generateId()
User(id, name, email)
}
def validate(user: User): Either[String, User] = {
if (user.email.contains("@")) Right(user)
else Left("Invalid email")
}
}
Roc:
interface UserService
exposes [User, create, validate]
imports []
User : {
id : U64,
name : Str,
email : Str,
}
create : Str, Str -> User
create = \name, email ->
id = generateId({})
{ id, name, email }
validate : User -> Result User [InvalidEmail]
validate = \user ->
if Str.contains(user.email, "@") then
Ok(user)
else
Err(InvalidEmail)
# Private helper (not in exposes)
generateId : {} -> U64
generateId = \{} ->
# Implementation
123
Why this translation:
- Package → Roc module structure (file organization)
- Companion object → Interface exposing functions
- Private members → not in
exposeslist - Public API → explicitly listed in
exposes
Common Pitfalls
1. Trying to Use Mutable State
Scala (Anti-pattern in Roc):
var counter = 0
def increment(): Unit = { counter += 1 }
Roc Approach:
# No mutable state - return new value
increment : I64 -> I64
increment = \counter ->
counter + 1
# Usage
counter = 0
newCounter = increment(counter)
Why: Roc has no mutable variables. Always return new values.
2. Expecting JVM Collections Performance Characteristics
Pitfall: Assuming Scala Vector performance in Roc.
Solution: Roc List is the primary collection. It's efficient for most use cases. Don't over-optimize based on JVM knowledge.
3. Trying to Use Null
Scala:
var maybeUser: User = null // Avoid!
val user: Option[User] = Option(nullableValue)
Roc:
# No null! Use tag unions
maybeUser : [Some User, None]
maybeUser = None
# When converting from nullable source
userFromNullable : [Some User, None]
userFromNullable = Some({ name: "Alice", age: 30 })
Why: Roc has no null. Always use tag unions for optional values.
4. Confusing Either Order
Pitfall: Scala Either[L, R] vs Roc Result ok err
Scala:
val result: Either[String, Int] = Right(42) // Right is success
Roc:
result : Result I64 Str # First param is success, second is error
result = Ok(42)
Why: Roc Result has opposite parameter order compared to Scala Either.
5. Expecting Implicit Conversions
Pitfall: Scala's implicit conversions don't exist in Roc.
Solution: All conversions must be explicit:
# Explicit conversion required
intToStr : I64 -> Str
intToStr = Num.toStr
str = intToStr(42)
6. Forgetting Platform Separation
Pitfall: Trying to do I/O directly in application code.
Solution: Use platform-provided Tasks:
# Wrong - no direct I/O
# readFile("path") # This doesn't exist!
# Correct - platform Task
import pf.File
import pf.Task exposing [Task]
readFile : Str -> Task Str [FileErr]
readFile = \path ->
File.readUtf8(path)
Why: Roc applications are pure. All effects go through the platform.
Tooling
| Purpose | Scala | Roc | Notes |
|---|---|---|---|
| Build tool | sbt, Mill, Maven | roc CLI |
Roc has built-in build |
| Package manager | sbt, Maven | Platform dependencies | Platforms are URLs |
| Testing | ScalaTest, MUnit | roc test |
Inline expect statements |
| REPL | scala REPL |
roc repl |
Interactive evaluation |
| Formatter | Scalafmt | roc format |
Built-in formatter |
| Type checking | scalac | roc check |
Fast type checking |
| Documentation | Scaladoc | Comments in code | Markdown in interfaces |
Examples
Example 1: Simple HTTP Client
Scala (Akka HTTP):
import akka.actor.ActorSystem
import akka.http.scaladsl.Http
import akka.http.scaladsl.model._
import scala.concurrent.Future
implicit val system = ActorSystem()
import system.dispatcher
def fetchUrl(url: String): Future[String] = {
Http().singleRequest(HttpRequest(uri = url)).flatMap { response =>
response.entity.toStrict(5.seconds).map(_.data.utf8String)
}
}
val content: Future[String] = fetchUrl("https://example.com")
Roc (basic-cli platform):
app [main] {
pf: platform "https://github.com/roc-lang/basic-cli/releases/download/0.10.0/vNe6s9hWzoTZtFmNkvEICPErI9ptji_ySjicO6CkucY.tar.br"
}
import pf.Http
import pf.Task exposing [Task]
import pf.Stdout
fetchUrl : Str -> Task Str [HttpErr]
fetchUrl = \url ->
response = Http.get!(url)
Task.ok(response.body)
main : Task {} []
main =
content = fetchUrl!("https://example.com")
Stdout.line!(content)
Example 2: Data Processing Pipeline
Scala:
case class User(id: Int, name: String, age: Int, active: Boolean)
val users = List(
User(1, "Alice", 30, true),
User(2, "Bob", 25, false),
User(3, "Charlie", 35, true)
)
val activeUserNames = users
.filter(_.active)
.filter(_.age >= 30)
.map(_.name)
.sorted
// Result: List("Alice", "Charlie")
Roc:
User : { id : U64, name : Str, age : U32, active : Bool }
users = [
{ id: 1, name: "Alice", age: 30, active: Bool.true },
{ id: 2, name: "Bob", age: 25, active: Bool.false },
{ id: 3, name: "Charlie", age: 35, active: Bool.true },
]
activeUserNames = users
|> List.keepIf(\user -> user.active)
|> List.keepIf(\user -> user.age >= 30)
|> List.map(\user -> user.name)
|> List.sortAsc
# Result: ["Alice", "Charlie"]
Example 3: Error Handling Pipeline
Scala:
def parseAndDivide(aStr: String, bStr: String): Either[String, Int] = {
for {
a <- aStr.toIntOption.toRight(s"Invalid a: $aStr")
b <- bStr.toIntOption.toRight(s"Invalid b: $bStr")
result <- if (b != 0) Right(a / b) else Left("Division by zero")
} yield result
}
parseAndDivide("10", "2") // Right(5)
parseAndDivide("10", "0") // Left("Division by zero")
parseAndDivide("abc", "2") // Left("Invalid a: abc")
Roc:
parseAndDivide : Str, Str -> Result I64 [InvalidA, InvalidB, DivByZero]
parseAndDivide = \aStr, bStr ->
a =
when Str.toI64(aStr) is
Ok(n) -> Ok(n)
Err(_) -> Err(InvalidA)
b =
when Str.toI64(bStr) is
Ok(n) -> Ok(n)
Err(_) -> Err(InvalidB)
# Using try operator for early returns
aVal = a!
bVal = b!
if bVal == 0 then
Err(DivByZero)
else
Ok(aVal // bVal)
expect parseAndDivide("10", "2") == Ok(5)
expect parseAndDivide("10", "0") == Err(DivByZero)
expect parseAndDivide("abc", "2") == Err(InvalidA)
Performance Considerations
Scala vs Roc Performance Differences
| Aspect | Scala | Roc | Impact |
|---|---|---|---|
| Runtime | JVM (GC, JIT) | Native compilation | Roc generally faster startup, lower memory |
| Collections | Optimized for JVM | Native data structures | Different performance characteristics |
| Concurrency | Thread pool, async | Platform-managed | Depends on platform implementation |
| Memory | Heap-based, GC | Platform-managed | Lower overhead in Roc |
| Startup | JVM warmup time | Instant | Roc has no warmup period |
Optimization Tips
- Don't over-optimize based on JVM knowledge - Roc's performance profile is different
- Trust List performance - It's the primary collection and is well-optimized
- Leverage platform capabilities - Let platform handle concurrency and I/O
- Profile before optimizing - Different bottlenecks than JVM code
- Avoid premature abstraction - Roc encourages simple, direct code
See Also
For more examples and patterns, see:
meta-convert-dev- Foundational patterns with cross-language exampleslang-scala-dev- Scala development patternslang-roc-dev- Roc development patternsconvert-erlang-roc- Similar functional language conversion (BEAM → Roc)
Cross-cutting pattern skills:
patterns-concurrency-dev- Futures/Actors vs Tasks across languagespatterns-serialization-dev- JSON, validation across languagespatterns-metaprogramming-dev- Implicits vs abilities vs other approaches