Claude Code Plugins

Community-maintained marketplace

Feedback

openmetadata-dq

@aRustyDev/ai
0
0

Configure and manage data quality tests, profiling, alerts, and incidents in OpenMetadata. Use when setting up quality tests, configuring profiler workflows, creating observability alerts, or triaging data quality incidents.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name openmetadata-dq
description Configure and manage data quality tests, profiling, alerts, and incidents in OpenMetadata. Use when setting up quality tests, configuring profiler workflows, creating observability alerts, or triaging data quality incidents.

OpenMetadata Data Quality & Observability

Guide for configuring data quality tests, profiling, alerts, and incident management in OpenMetadata.

When to Use This Skill

  • Creating and managing data quality tests
  • Configuring data profiler workflows
  • Setting up observability alerts
  • Triaging and resolving data incidents
  • Exploring lineage for impact analysis
  • Running quality tests programmatically

This Skill Does NOT Cover

  • General data discovery and UI navigation (see openmetadata-user)
  • Using SDKs for non-quality tasks (see openmetadata-dev)
  • Administering users and policies (see openmetadata-ops)
  • Contributing quality features to core (see openmetadata-sdk-dev)

Data Quality Overview

OpenMetadata provides comprehensive data quality capabilities:

┌─────────────────────────────────────────────────────────────┐
│                 Data Quality Framework                       │
├─────────────────────────────────────────────────────────────┤
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────────────┐  │
│  │   Profiler  │  │   Tests     │  │   Incident Manager  │  │
│  │  (Metrics)  │→ │ (Assertions)│→ │   (Resolution)      │  │
│  └─────────────┘  └─────────────┘  └─────────────────────┘  │
│         ↓                ↓                    ↓              │
│  ┌─────────────────────────────────────────────────────────┐│
│  │                 Alerts & Notifications                  ││
│  └─────────────────────────────────────────────────────────┘│
└─────────────────────────────────────────────────────────────┘

Data Profiler

What the Profiler Does

The profiler captures descriptive statistics to:

  • Understand data shape and distribution
  • Validate assumptions (nulls, duplicates, ranges)
  • Detect anomalies over time
  • Power data quality tests

Profiler Metrics

Table-Level Metrics

Metric Description
Row Count Total rows in table
Column Count Number of columns
Size Bytes Table size in bytes
Create DateTime When table was created

Column-Level Metrics

Metric Description
Null Count Number of null values
Null Ratio Percentage of nulls
Unique Count Distinct values
Unique Ratio Percentage unique
Duplicate Count Non-unique values
Min/Max Range for numeric/date
Mean/Median Central tendency
Std Dev Value distribution spread
Histogram Value distribution buckets

Configuring Profiler Workflow

Via UI

  1. Navigate to Settings → Services → Database Services
  2. Select your database service
  3. Click Ingestion → Add Ingestion
  4. Select Profiler as ingestion type
  5. Configure:
    • Schedule (cron expression)
    • Sample size percentage
    • Tables to include/exclude
    • Metrics to compute

Via YAML

source:
  type: profiler
  serviceName: my-database
  sourceConfig:
    config:
      type: Profiler
      generateSampleData: true
      profileSampleType: PERCENTAGE
      profileSample: 50  # Sample 50% of rows
      tableFilterPattern:
        includes:
          - "prod.*"
        excludes:
          - ".*_staging"
      columnFilterPattern:
        includes:
          - ".*"

processor:
  type: orm-profiler
  config: {}

sink:
  type: metadata-rest
  config: {}

workflowConfig:
  openMetadataServerConfig:
    hostPort: http://localhost:8585/api
    authProvider: openmetadata
    securityConfig:
      jwtToken: ${OM_JWT_TOKEN}

Sample Configuration Options

Option Description Default
profileSampleType PERCENTAGE or ROWS PERCENTAGE
profileSample Sample size 50
generateSampleData Store sample rows true
sampleDataCount Rows to store 50
threadCount Parallel threads 5
timeoutSeconds Per-table timeout 43200

Viewing Profiler Results

  1. Navigate to table's Profiler tab
  2. View Table Profile:
    • Row count over time
    • Size trends
  3. View Column Profile:
    • Null percentages
    • Unique values
    • Distribution histograms

Data Quality Tests

Test Categories

Table-Level Tests

Test Description
tableRowCountToBeBetween Row count within range
tableRowCountToEqual Row count equals value
tableColumnCountToBeBetween Column count within range
tableColumnCountToEqual Column count equals value
tableRowInsertedCountToBeBetween New rows within range
tableCustomSQLQuery Custom SQL returns expected result

Column-Level Tests

Test Description
columnValuesToBeNotNull No null values
columnValuesToBeUnique All values unique
columnValuesToBeBetween Values within range
columnValuesToMatchRegex Values match pattern
columnValuesToBeInSet Values in allowed list
columnValueLengthsToBeBetween String lengths in range
columnValuesMissingCount Missing values below threshold
columnValueMaxToBeBetween Max value in range
columnValueMinToBeBetween Min value in range
columnValueMeanToBeBetween Mean in range
columnValueMedianToBeBetween Median in range
columnValueStdDevToBeBetween Std dev in range
columnValuesLengthsToMatch Exact string length

Creating Tests via UI

  1. Navigate to table's Data Quality tab
  2. Click + Add Test
  3. Select test type (Table or Column level)
  4. Choose test definition
  5. Configure parameters:
    • Column (for column tests)
    • Thresholds/values
    • Description
  6. Save test

Creating Tests via YAML

source:
  type: TestSuite
  serviceName: my-database
  sourceConfig:
    config:
      type: TestSuite
      entityFullyQualifiedName: my-database.schema.table

processor:
  type: orm-test-runner
  config:
    testCases:
      - name: orders_row_count_check
        testDefinitionName: tableRowCountToBeBetween
        parameterValues:
          - name: minValue
            value: 1000
          - name: maxValue
            value: 1000000

      - name: customer_id_not_null
        testDefinitionName: columnValuesToBeNotNull
        columnName: customer_id

      - name: status_in_valid_set
        testDefinitionName: columnValuesToBeInSet
        columnName: status
        parameterValues:
          - name: allowedValues
            value: "['pending', 'completed', 'cancelled']"

sink:
  type: metadata-rest
  config: {}

workflowConfig:
  openMetadataServerConfig:
    hostPort: http://localhost:8585/api
    authProvider: openmetadata
    securityConfig:
      jwtToken: ${OM_JWT_TOKEN}

Test Suites

Group related tests into test suites:

testSuites:
  - name: orders_table_suite
    description: Quality tests for orders table
    testCases:
      - orders_row_count_check
      - customer_id_not_null
      - status_in_valid_set

Custom SQL Tests

Write custom validation queries:

- name: custom_business_rule
  testDefinitionName: tableCustomSQLQuery
  parameterValues:
    - name: sqlExpression
      value: "SELECT COUNT(*) FROM orders WHERE total < 0"
    - name: strategy
      value: "COUNT"
    - name: threshold
      value: 0

Strategy Options:

  • COUNT - Result should equal threshold
  • ROWS - Should return no rows
  • VALUE - Single value comparison

Dimensional Testing

Test data quality by business dimensions:

- name: quality_by_region
  testDefinitionName: columnValuesToBeBetween
  columnName: revenue
  parameterValues:
    - name: minValue
      value: 0
    - name: partitionColumnName
      value: region
    - name: partitionValues
      value: "['US', 'EU', 'APAC']"

Running Tests Programmatically

Python SDK

from metadata.ingestion.ometa.ometa_api import OpenMetadata
from metadata.generated.schema.tests.testCase import TestCase
from metadata.generated.schema.tests.testDefinition import TestDefinition
from metadata.generated.schema.type.entityReference import EntityReference

# Initialize client
metadata = OpenMetadata(server_config)

# Get test definition
null_test = metadata.get_by_name(
    entity=TestDefinition,
    fqn="columnValuesToBeNotNull",
)

# Create test case
test_case = TestCase(
    name="customer_id_not_null",
    testDefinition=EntityReference(
        id=null_test.id,
        type="testDefinition",
    ),
    entityLink="<#E::table::my-db.schema.orders::columns::customer_id>",
    parameterValues=[],
)

created = metadata.create_or_update(test_case)
print(f"Created test: {created.name}")

Run from ETL Pipeline

from metadata.workflow.data_quality import TestSuiteWorkflow

config = {
    "source": {
        "type": "TestSuite",
        "serviceName": "my-database",
        "sourceConfig": {
            "config": {
                "type": "TestSuite",
                "entityFullyQualifiedName": "my-database.schema.orders"
            }
        }
    },
    # ... rest of config
}

workflow = TestSuiteWorkflow.create(config)
workflow.execute()
workflow.print_status()

Alerts and Notifications

Alert Types

Trigger Description
Test Failure When data quality test fails
Pipeline Failure When ingestion pipeline fails
Schema Change When table schema changes
Ownership Change When asset owner changes
New Asset When new asset is created

Creating Alerts

  1. Navigate to Settings → Notifications
  2. Click + Add Alert
  3. Configure:
    • Alert name and description
    • Trigger type
    • Filter conditions
    • Notification destinations

Notification Destinations

Destination Setup Required
Email SMTP configuration
Slack Webhook URL
Microsoft Teams Webhook URL
Webhook Custom endpoint URL

Alert Filters

Filter which events trigger alerts:

filters:
  - field: entityType
    condition: equals
    value: table
  - field: testResult
    condition: equals
    value: Failed
  - field: tier
    condition: in
    values: [Tier1, Tier2]

Slack Integration

destinations:
  - type: Slack
    config:
      webhookUrl: https://hooks.slack.com/services/XXX/YYY/ZZZ
      channel: "#data-quality-alerts"

Incident Manager

Incident Lifecycle

Test Failure
    ↓
New Incident Created
    ↓
Acknowledged (ack)
    ↓
Assigned to Owner
    ↓
Investigation
    ↓
Root Cause Documented
    ↓
Resolved (with reason)

Incident States

State Description
New Incident just created
Ack Acknowledged, under review
Assigned Assigned to specific person/team
Resolved Issue fixed, incident closed

Managing Incidents

Acknowledge

  1. Navigate to Incident Manager
  2. Find new incident
  3. Click Ack to acknowledge
  4. Incident moves to acknowledged state

Assign

  1. Select acknowledged incident
  2. Click Assign
  3. Search for user or team
  4. Add assignment notes
  5. Task created for assignee

Document Root Cause

  1. Open incident details
  2. Click Root Cause
  3. Document:
    • What went wrong
    • Why it happened
    • How it was discovered
  4. Save for future reference

Resolve

  1. Open incident
  2. Click Resolve
  3. Select resolution reason:
    • Fixed - Issue corrected
    • False Positive - Test was wrong
    • Duplicate - Same as another incident
    • Won't Fix - Accepted as-is
  4. Add resolution comments
  5. Confirm resolution

Resolution Workflow

1. Failure Notification → System alerts on test failure
2. Acknowledgment → Team member confirms awareness
3. Assignment → Routes to knowledgeable person
4. Status Updates → Assigned team communicates progress
5. Resolution → All stakeholders notified of fix

Historical Analysis

Past incidents serve as a troubleshooting handbook:

  • Review similar scenarios
  • Access previous resolutions
  • Learn from patterns
  • Improve test coverage

Lineage for Impact Analysis

Lineage in Data Quality Context

Use lineage to understand:

  • Which downstream tables are affected by issues
  • Which upstream sources might be the root cause
  • Impact radius of data quality problems

Exploring Lineage

  1. Navigate to table's Lineage tab
  2. View upstream sources (data origins)
  3. View downstream targets (data consumers)
  4. Click nodes for quality status

Lineage Configuration

Setting Range Purpose
Upstream Depth 1-3 How far back to trace
Downstream Depth 1-3 How far forward to trace
Nodes per Layer 5-50 Max nodes displayed

Lineage Layers

Layer Quality Use Case
Column Track field transformations
Observability See test results on each node
Service Cross-system impact analysis

Observability Layer

Enabling the observability layer shows:

  • Test pass/fail status on each node
  • Failing tests propagate visual indicators
  • Quick identification of problem sources

Profiler and Test Scheduling

Cron Expressions

Expression Schedule
0 0 * * * Daily at midnight
0 */6 * * * Every 6 hours
0 0 * * 0 Weekly on Sunday
0 0 1 * * Monthly on 1st
*/30 * * * * Every 30 minutes

Recommended Schedules

Workload Type Profiler Tests
Batch (Daily) Daily after load Daily after load
Streaming Every 6 hours Every hour
Critical Hourly Every 15 minutes
Archive Weekly Weekly

Managing Schedules

  1. Navigate to Settings → Services → [Service]
  2. Go to Ingestion tab
  3. View/edit scheduled workflows:
    • Metadata ingestion
    • Profiler
    • Test suites

Best Practices

Test Coverage

  1. Start with critical tables - Tier1 assets first
  2. Cover basics first:
    • Null checks on required columns
    • Uniqueness on primary keys
    • Range checks on numeric fields
  3. Add business rules - Custom SQL for domain logic
  4. Test incrementally - New rows, not full table

Profiler Configuration

  1. Sample appropriately - 10-50% usually sufficient
  2. Exclude large columns - Skip LOBs and JSON
  3. Schedule off-peak - Avoid production impact
  4. Timeout appropriately - Set realistic limits

Alert Management

  1. Avoid alert fatigue - Start with critical tests
  2. Route appropriately - Right team for right issues
  3. Include context - Link to asset and test details
  4. Set severity levels - Not all failures are equal

Incident Response

  1. Acknowledge quickly - Show awareness
  2. Document thoroughly - Future you will thank you
  3. Communicate status - Keep stakeholders informed
  4. Learn from incidents - Improve tests and processes

Troubleshooting

Profiler Not Running

Symptom Check
No metrics Verify ingestion is scheduled
Missing columns Check column filter patterns
Slow execution Reduce sample size
Timeouts Increase timeout or reduce scope

Tests Failing Unexpectedly

Symptom Check
False positives Review test thresholds
Intermittent failures Check for race conditions
All tests failing Verify database connectivity
No test results Check test suite is scheduled

Alerts Not Sending

Symptom Check
No emails Verify SMTP configuration
No Slack messages Check webhook URL
Wrong recipients Review alert filters
Too many alerts Tighten filter conditions

Integration with CI/CD

GitHub Actions Example

name: Data Quality Check
on:
  schedule:
    - cron: '0 6 * * *'
  workflow_dispatch:

jobs:
  quality-check:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4

      - name: Setup Python
        uses: actions/setup-python@v4
        with:
          python-version: '3.10'

      - name: Install dependencies
        run: pip install openmetadata-ingestion

      - name: Run quality tests
        env:
          OM_HOST: ${{ secrets.OM_HOST }}
          OM_TOKEN: ${{ secrets.OM_TOKEN }}
        run: |
          metadata_openmetadata test-suite run \
            --config quality-tests.yaml

      - name: Check results
        run: |
          # Fail pipeline if critical tests failed
          metadata_openmetadata test-suite status \
            --suite critical-tests \
            --fail-on-failure

References