Claude Code Plugins

Community-maintained marketplace

Feedback

patterns-metaprogramming-dev

@aRustyDev/ai
0
0

Cross-cutting patterns for metaprogramming mechanisms across languages. Use when translating decorators between languages, converting annotations to macros, understanding metaprogramming equivalents, or designing code generation strategies for language conversions.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name patterns-metaprogramming-dev
description Cross-cutting patterns for metaprogramming mechanisms across languages. Use when translating decorators between languages, converting annotations to macros, understanding metaprogramming equivalents, or designing code generation strategies for language conversions.

Metaprogramming Patterns

Cross-language reference for metaprogramming mechanisms including decorators, macros, annotations, and code generation. This skill helps translate metaprogramming patterns between languages during code conversion.

Overview

This skill covers:

  • Decorator/annotation/attribute comparison across languages
  • Macro systems (compile-time vs runtime)
  • Code generation patterns
  • Translation strategies between paradigms

This skill does NOT cover:

  • Language-specific metaprogramming tutorials (see lang-*-dev skills)
  • Building specific decorators/macros for applications
  • Runtime reflection for debugging (see language-specific skills)

Metaprogramming Mechanism Comparison

Language Primary Mechanism Execution Time Power Level
TypeScript Decorators Runtime Medium
Python Decorators Runtime High
Rust Proc macros, derive Compile-time Very High
Java/Kotlin Annotations Compile + Runtime Medium
Go //go:generate Build-time Low
C# Attributes Runtime (reflection) Medium
Ruby Metaprogramming APIs Runtime Very High
Elixir Macros Compile-time Very High

Execution Time Impact

Compile-time (Rust, Elixir)
├── Zero runtime overhead
├── Full type information available
├── Complex transformations possible
└── Errors caught at compile time

Runtime (Python, TypeScript, Ruby)
├── Runtime overhead (usually minimal)
├── Dynamic behavior possible
├── Can inspect runtime values
└── Errors may occur at runtime

Build-time (Go generate)
├── Separate build step
├── Generates source files
├── No runtime mechanism
└── Manual regeneration needed

Decorator/Annotation Comparison

TypeScript Decorators

// Class decorator
@Controller('/users')
class UserController {
  // Method decorator
  @Get('/:id')
  @Authorized(['admin'])
  getUser(@Param('id') id: string): User {
    return this.userService.find(id);
  }
}

// Decorator factory (returns decorator)
function Log(prefix: string) {
  return function (target: any, key: string, descriptor: PropertyDescriptor) {
    const original = descriptor.value;
    descriptor.value = function (...args: any[]) {
      console.log(`${prefix}: ${key} called`);
      return original.apply(this, args);
    };
  };
}

Capabilities:

  • Class, method, property, parameter decorators
  • Decorator factories for configuration
  • Metadata reflection (reflect-metadata)
  • Runtime execution (after class definition)

Python Decorators

from functools import wraps

# Function decorator
def log(prefix: str):
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            print(f"{prefix}: {func.__name__} called")
            return func(*args, **kwargs)
        return wrapper
    return decorator

# Class decorator
def singleton(cls):
    instances = {}
    def get_instance(*args, **kwargs):
        if cls not in instances:
            instances[cls] = cls(*args, **kwargs)
        return instances[cls]
    return get_instance

@singleton
class Database:
    pass

# Method with multiple decorators (applied bottom-up)
@app.route('/users/<id>')
@requires_auth
@log("API")
def get_user(id: str) -> User:
    return user_service.find(id)

Capabilities:

  • Function, method, class decorators
  • Stacking multiple decorators
  • Access to wrapped function's attributes
  • Full runtime introspection
  • Arbitrary Python code in decorators

Rust Derive Macros and Attributes

// Derive macro (generates trait implementations)
#[derive(Debug, Clone, Serialize, Deserialize)]
struct User {
    #[serde(rename = "user_id")]
    id: String,

    #[serde(skip_serializing_if = "Option::is_none")]
    email: Option<String>,
}

// Attribute macro (transforms the item)
#[tokio::main]
async fn main() {
    // ...
}

// Proc macro (custom compile-time code generation)
#[route(GET, "/users/:id")]
async fn get_user(id: Path<String>) -> impl Responder {
    // Handler implementation
}

Capabilities:

  • Derive macros for trait implementation
  • Attribute macros for code transformation
  • Function-like macros (macro_rules!, proc macros)
  • Full AST access at compile time
  • Zero runtime overhead

Java/Kotlin Annotations

// Runtime annotation
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface Cached {
    int ttlSeconds() default 300;
}

// Usage
@RestController
@RequestMapping("/users")
public class UserController {

    @GetMapping("/{id}")
    @Cached(ttlSeconds = 60)
    public User getUser(@PathVariable String id) {
        return userService.find(id);
    }
}

Capabilities:

  • Compile-time (SOURCE), class-file (CLASS), runtime (RUNTIME) retention
  • Annotation processors for compile-time code generation
  • Runtime reflection for reading annotations
  • Limited to metadata (no code transformation)

Go Generate Directives

//go:generate stringer -type=Status
type Status int

const (
    Pending Status = iota
    Active
    Completed
)

//go:generate mockgen -source=service.go -destination=mock_service.go
type UserService interface {
    Find(id string) (*User, error)
}

Capabilities:

  • Build-time code generation
  • Executes external tools
  • Generates new source files
  • No runtime mechanism (just comments)
  • Manual go generate step required

C# Attributes

[ApiController]
[Route("[controller]")]
public class UserController : ControllerBase
{
    [HttpGet("{id}")]
    [Authorize(Roles = "Admin")]
    [ResponseCache(Duration = 60)]
    public ActionResult<User> GetUser(string id)
    {
        return userService.Find(id);
    }
}

// Custom attribute
[AttributeUsage(AttributeTargets.Method)]
public class LogAttribute : Attribute
{
    public string Prefix { get; set; }
}

Capabilities:

  • Runtime reflection to read attributes
  • Compile-time analysis with Roslyn
  • Source generators for code generation
  • Metadata only (no direct code transformation)

Translation Patterns

Decorator → Derive Macro (TS/Python → Rust)

Source Pattern Rust Equivalent Notes
@Serialize #[derive(Serialize)] Derive macro
@validate Validator crate derives #[derive(Validate)]
@log method decorator Tracing + custom wrapper No direct equivalent
@cache Memoization crate or manual cached crate
@singleton lazy_static! or OnceCell Different pattern

Example Translation:

// TypeScript
@Entity()
class User {
  @Column()
  @Length(1, 100)
  name: string;

  @Column()
  @IsEmail()
  email: string;
}
// Rust equivalent
#[derive(Debug, Serialize, Deserialize, Validate)]
struct User {
    #[validate(length(min = 1, max = 100))]
    name: String,

    #[validate(email)]
    email: String,
}

Decorator → Annotation (Python/TS → Java)

# Python
@app.route('/users/<id>', methods=['GET'])
@requires_auth
def get_user(id: str) -> User:
    return user_service.find(id)
// Java equivalent
@GetMapping("/users/{id}")
@PreAuthorize("isAuthenticated()")
public User getUser(@PathVariable String id) {
    return userService.find(id);
}

Method Decorator → Manual Wrapper (Any → Go)

Go lacks decorators. Use wrapper functions or middleware:

// TypeScript
@Log("API")
@Timed()
async getUser(id: string): Promise<User> {
    return this.service.find(id);
}
// Go equivalent - middleware pattern
func LogMiddleware(prefix string, next http.HandlerFunc) http.HandlerFunc {
    return func(w http.ResponseWriter, r *http.Request) {
        log.Printf("%s: %s %s", prefix, r.Method, r.URL.Path)
        next(w, r)
    }
}

func TimedMiddleware(next http.HandlerFunc) http.HandlerFunc {
    return func(w http.ResponseWriter, r *http.Request) {
        start := time.Now()
        next(w, r)
        log.Printf("Duration: %v", time.Since(start))
    }
}

// Usage
http.HandleFunc("/users/", LogMiddleware("API", TimedMiddleware(getUser)))

Class Decorator → Trait Implementation (Python → Rust)

# Python
@dataclass
@total_ordering
class User:
    name: str
    age: int
// Rust equivalent
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
struct User {
    name: String,
    age: i32,
}

Common Use Cases

1. Serialization/Validation

Use Case TypeScript Python Rust Go
JSON serialization class-transformer @dataclass + json #[derive(Serialize)] struct tags
Validation class-validator pydantic #[derive(Validate)] validator pkg
ORM mapping TypeORM decorators SQLAlchemy Diesel derives GORM tags

2. Web Frameworks

Framework Pattern TypeScript Python Rust Java
Route definition @Get('/path') @app.route() #[get("/path")] @GetMapping
Dependency injection @Injectable() @inject Constructor @Autowired
Middleware @UseGuards() @requires_auth Tower layers @PreAuthorize

3. Logging/Tracing

Pattern TypeScript Python Rust Go
Method logging @Log() @log #[instrument] Middleware
Timing @Timed() @timer #[instrument] Middleware
Tracing OpenTelemetry decorators @trace tracing macros Context

Anti-Patterns

1. Over-decoration

// ❌ Too many decorators obscure the logic
@Controller()
@UseGuards(AuthGuard)
@UseInterceptors(LoggingInterceptor)
@UsePipes(ValidationPipe)
@UseFilters(HttpExceptionFilter)
class UserController {
  @Get()
  @UseGuards(RoleGuard)
  @Serialize(UserDto)
  @Cache(60)
  @Throttle(10, 60)
  @ApiOperation({ summary: 'Get users' })
  @ApiResponse({ status: 200 })
  getUsers() { }
}

// ✓ Group related concerns
@Controller()
@UseGuards(AuthGuard, RoleGuard)
class UserController {
  @Get()
  @Cache(60)
  getUsers() { }
}

2. Side Effects in Decorators

# ❌ Decorator with hidden side effects
def register(func):
    global_registry.append(func)  # Hidden mutation!
    return func

# ✓ Explicit registration
def register(func):
    func._registered = True
    return func

def collect_registered(module):
    return [f for f in dir(module) if getattr(f, '_registered', False)]

3. Decorator Order Confusion

# Decorators apply bottom-up!
@decorator_a  # Applied SECOND
@decorator_b  # Applied FIRST
def func():
    pass

# Equivalent to:
func = decorator_a(decorator_b(func))

4. Losing Function Metadata

# ❌ Loses original function name, docstring
def bad_decorator(func):
    def wrapper(*args, **kwargs):
        return func(*args, **kwargs)
    return wrapper

# ✓ Preserve metadata
from functools import wraps

def good_decorator(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        return func(*args, **kwargs)
    return wrapper

When No Direct Equivalent Exists

Strategy 1: Manual Implementation

When target language lacks metaprogramming for a pattern, implement manually:

// TypeScript: Memoization decorator
@Memoize()
function expensiveComputation(n: number): number {
    // ...
}
// Go: Manual memoization
var cache = make(map[int]int)
var mu sync.RWMutex

func expensiveComputation(n int) int {
    mu.RLock()
    if val, ok := cache[n]; ok {
        mu.RUnlock()
        return val
    }
    mu.RUnlock()

    result := // ... compute
    mu.Lock()
    cache[n] = result
    mu.Unlock()
    return result
}

Strategy 2: Code Generation

Use build-time generation when runtime metaprogramming isn't available:

//go:generate go run gen_memoize.go -type=expensiveComputation

Strategy 3: Interface/Trait Abstraction

Replace decorator behavior with explicit interfaces:

// TypeScript: Decorator-based
@Injectable()
class UserService {
    @Transactional()
    async createUser(data: UserData): Promise<User> { }
}
// Rust: Trait-based
trait Transactional {
    async fn in_transaction<F, T>(&self, f: F) -> Result<T>
    where
        F: FnOnce() -> Result<T>;
}

impl UserService {
    async fn create_user(&self, data: UserData) -> Result<User> {
        self.in_transaction(|| {
            // ... implementation
        }).await
    }
}

Best Practices

  1. Prefer compile-time over runtime when possible for performance
  2. Keep decorators focused - one responsibility per decorator
  3. Document decorator behavior - especially execution order
  4. Preserve function metadata - use @wraps in Python, etc.
  5. Consider testability - decorated code should remain testable
  6. Avoid magic - decorator behavior should be predictable
  7. Match target language idioms - don't force patterns that don't fit

Related Skills

  • meta-convert-dev - Code conversion patterns
  • convert-* skills - Language-specific conversions
  • lang-*-dev skills - Language-specific metaprogramming details
  • patterns-serialization-dev - Serialization patterns (often uses metaprogramming)