| name | swarm-advanced |
| description | Advanced swarm orchestration patterns for research, development, testing, and complex distributed workflows |
| version | 2.0.0 |
| category | orchestration |
| tags | swarm, distributed, parallel, research, testing, development, coordination |
| author | Claude Flow Team |
Advanced Swarm Orchestration
Master advanced swarm patterns for distributed research, development, and testing workflows. This skill covers comprehensive orchestration strategies using both MCP tools and CLI commands.
Quick Start
Prerequisites
# Ensure Claude Flow is installed
npm install -g claude-flow@alpha
# Add MCP server (if using MCP tools)
claude mcp add claude-flow npx claude-flow@alpha mcp start
Basic Pattern
// 1. Initialize swarm topology
mcp__claude - flow__swarm_init({ topology: 'mesh', maxAgents: 6 });
// 2. Spawn specialized agents
mcp__claude - flow__agent_spawn({ type: 'researcher', name: 'Agent 1' });
// 3. Orchestrate tasks
mcp__claude - flow__task_orchestrate({ task: '...', strategy: 'parallel' });
Core Concepts
Swarm Topologies
Mesh Topology - Peer-to-peer communication, best for research and analysis
- All agents communicate directly
- High flexibility and resilience
- Use for: Research, analysis, brainstorming
Hierarchical Topology - Coordinator with subordinates, best for development
- Clear command structure
- Sequential workflow support
- Use for: Development, structured workflows
Star Topology - Central coordinator, best for testing
- Centralized control and monitoring
- Parallel execution with coordination
- Use for: Testing, validation, quality assurance
Ring Topology - Sequential processing chain
- Step-by-step processing
- Pipeline workflows
- Use for: Multi-stage processing, data pipelines
Agent Strategies
Adaptive - Dynamic adjustment based on task complexity Balanced - Equal distribution of work across agents Specialized - Task-specific agent assignment Parallel - Maximum concurrent execution
Pattern 1: Research Swarm
Purpose
Deep research through parallel information gathering, analysis, and synthesis.
Architecture
// Initialize research swarm
mcp__claude -
flow__swarm_init({
topology: 'mesh',
maxAgents: 6,
strategy: 'adaptive',
});
// Spawn research team
const researchAgents = [
{
type: 'researcher',
name: 'Web Researcher',
capabilities: ['web-search', 'content-extraction', 'source-validation'],
},
{
type: 'researcher',
name: 'Academic Researcher',
capabilities: ['paper-analysis', 'citation-tracking', 'literature-review'],
},
{
type: 'analyst',
name: 'Data Analyst',
capabilities: ['data-processing', 'statistical-analysis', 'visualization'],
},
{
type: 'analyst',
name: 'Pattern Analyzer',
capabilities: ['trend-detection', 'correlation-analysis', 'outlier-detection'],
},
{
type: 'documenter',
name: 'Report Writer',
capabilities: ['synthesis', 'technical-writing', 'formatting'],
},
];
// Spawn all agents
researchAgents.forEach(agent => {
mcp__claude -
flow__agent_spawn({
type: agent.type,
name: agent.name,
capabilities: agent.capabilities,
});
});
Research Workflow
Phase 1: Information Gathering
// Parallel information collection
mcp__claude -
flow__parallel_execute({
tasks: [
{
id: 'web-search',
command: 'search recent publications and articles',
},
{
id: 'academic-search',
command: 'search academic databases and papers',
},
{
id: 'data-collection',
command: 'gather relevant datasets and statistics',
},
{
id: 'expert-search',
command: 'identify domain experts and thought leaders',
},
],
});
// Store research findings in memory
mcp__claude -
flow__memory_usage({
action: 'store',
key: 'research-findings-' + Date.now(),
value: JSON.stringify(findings),
namespace: 'research',
ttl: 604800, // 7 days
});
Phase 2: Analysis and Validation
// Pattern recognition in findings
mcp__claude -
flow__pattern_recognize({
data: researchData,
patterns: ['trend', 'correlation', 'outlier', 'emerging-pattern'],
});
// Cognitive analysis
mcp__claude -
flow__cognitive_analyze({
behavior: 'research-synthesis',
});
// Quality assessment
mcp__claude -
flow__quality_assess({
target: 'research-sources',
criteria: ['credibility', 'relevance', 'recency', 'authority'],
});
// Cross-reference validation
mcp__claude -
flow__neural_patterns({
action: 'analyze',
operation: 'fact-checking',
metadata: { sources: sourcesArray },
});
Phase 3: Knowledge Management
// Search existing knowledge base
mcp__claude -
flow__memory_search({
pattern: 'topic X',
namespace: 'research',
limit: 20,
});
// Create knowledge graph connections
mcp__claude -
flow__neural_patterns({
action: 'learn',
operation: 'knowledge-graph',
metadata: {
topic: 'X',
connections: relatedTopics,
depth: 3,
},
});
// Store connections for future use
mcp__claude -
flow__memory_usage({
action: 'store',
key: 'knowledge-graph-X',
value: JSON.stringify(knowledgeGraph),
namespace: 'research/graphs',
ttl: 2592000, // 30 days
});
Phase 4: Report Generation
// Orchestrate report generation
mcp__claude -
flow__task_orchestrate({
task: 'generate comprehensive research report',
strategy: 'sequential',
priority: 'high',
dependencies: ['gather', 'analyze', 'validate', 'synthesize'],
});
// Monitor research progress
mcp__claude -
flow__swarm_status({
swarmId: 'research-swarm',
});
// Generate final report
mcp__claude -
flow__workflow_execute({
workflowId: 'research-report-generation',
params: {
findings: findings,
format: 'comprehensive',
sections: [
'executive-summary',
'methodology',
'findings',
'analysis',
'conclusions',
'references',
],
},
});
CLI Fallback
# Quick research swarm
npx claude-flow swarm "research AI trends in 2025" \
--strategy research \
--mode distributed \
--max-agents 6 \
--parallel \
--output research-report.md
Pattern 2: Development Swarm
Purpose
Full-stack development through coordinated specialist agents.
Architecture
// Initialize development swarm with hierarchy
mcp__claude -
flow__swarm_init({
topology: 'hierarchical',
maxAgents: 8,
strategy: 'balanced',
});
// Spawn development team
const devTeam = [
{ type: 'architect', name: 'System Architect', role: 'coordinator' },
{ type: 'coder', name: 'Backend Developer', capabilities: ['node', 'api', 'database'] },
{ type: 'coder', name: 'Frontend Developer', capabilities: ['react', 'ui', 'ux'] },
{ type: 'coder', name: 'Database Engineer', capabilities: ['sql', 'nosql', 'optimization'] },
{ type: 'tester', name: 'QA Engineer', capabilities: ['unit', 'integration', 'e2e'] },
{
type: 'reviewer',
name: 'Code Reviewer',
capabilities: ['security', 'performance', 'best-practices'],
},
{
type: 'documenter',
name: 'Technical Writer',
capabilities: ['api-docs', 'guides', 'tutorials'],
},
{ type: 'monitor', name: 'DevOps Engineer', capabilities: ['ci-cd', 'deployment', 'monitoring'] },
];
// Spawn all team members
devTeam.forEach(member => {
mcp__claude -
flow__agent_spawn({
type: member.type,
name: member.name,
capabilities: member.capabilities,
swarmId: 'dev-swarm',
});
});
Development Workflow
Phase 1: Architecture and Design
// System architecture design
mcp__claude -
flow__task_orchestrate({
task: 'design system architecture for REST API',
strategy: 'sequential',
priority: 'critical',
assignTo: 'System Architect',
});
// Store architecture decisions
mcp__claude -
flow__memory_usage({
action: 'store',
key: 'architecture-decisions',
value: JSON.stringify(architectureDoc),
namespace: 'development/design',
});
Phase 2: Parallel Implementation
// Parallel development tasks
mcp__claude -
flow__parallel_execute({
tasks: [
{
id: 'backend-api',
command: 'implement REST API endpoints',
assignTo: 'Backend Developer',
},
{
id: 'frontend-ui',
command: 'build user interface components',
assignTo: 'Frontend Developer',
},
{
id: 'database-schema',
command: 'design and implement database schema',
assignTo: 'Database Engineer',
},
{
id: 'api-documentation',
command: 'create API documentation',
assignTo: 'Technical Writer',
},
],
});
// Monitor development progress
mcp__claude -
flow__swarm_monitor({
swarmId: 'dev-swarm',
interval: 5000,
});
Phase 3: Testing and Validation
// Comprehensive testing
mcp__claude -
flow__batch_process({
items: [
{ type: 'unit', target: 'all-modules' },
{ type: 'integration', target: 'api-endpoints' },
{ type: 'e2e', target: 'user-flows' },
{ type: 'performance', target: 'critical-paths' },
],
operation: 'execute-tests',
});
// Quality assessment
mcp__claude -
flow__quality_assess({
target: 'codebase',
criteria: ['coverage', 'complexity', 'maintainability', 'security'],
});
Phase 4: Review and Deployment
// Code review workflow
mcp__claude -
flow__workflow_execute({
workflowId: 'code-review-process',
params: {
reviewers: ['Code Reviewer'],
criteria: ['security', 'performance', 'best-practices'],
},
});
// CI/CD pipeline
mcp__claude -
flow__pipeline_create({
config: {
stages: ['build', 'test', 'security-scan', 'deploy'],
environment: 'production',
},
});
CLI Fallback
# Quick development swarm
npx claude-flow swarm "build REST API with authentication" \
--strategy development \
--mode hierarchical \
--monitor \
--output sqlite
Pattern 3: Testing Swarm
Purpose
Comprehensive quality assurance through distributed testing.
Architecture
// Initialize testing swarm with star topology
mcp__claude -
flow__swarm_init({
topology: 'star',
maxAgents: 7,
strategy: 'parallel',
});
// Spawn testing team
const testingTeam = [
{
type: 'tester',
name: 'Unit Test Coordinator',
capabilities: ['unit-testing', 'mocking', 'coverage', 'tdd'],
},
{
type: 'tester',
name: 'Integration Tester',
capabilities: ['integration', 'api-testing', 'contract-testing'],
},
{
type: 'tester',
name: 'E2E Tester',
capabilities: ['e2e', 'ui-testing', 'user-flows', 'selenium'],
},
{
type: 'tester',
name: 'Performance Tester',
capabilities: ['load-testing', 'stress-testing', 'benchmarking'],
},
{
type: 'monitor',
name: 'Security Tester',
capabilities: ['security-testing', 'penetration-testing', 'vulnerability-scanning'],
},
{
type: 'analyst',
name: 'Test Analyst',
capabilities: ['coverage-analysis', 'test-optimization', 'reporting'],
},
{
type: 'documenter',
name: 'Test Documenter',
capabilities: ['test-documentation', 'test-plans', 'reports'],
},
];
// Spawn all testers
testingTeam.forEach(tester => {
mcp__claude -
flow__agent_spawn({
type: tester.type,
name: tester.name,
capabilities: tester.capabilities,
swarmId: 'testing-swarm',
});
});
Testing Workflow
Phase 1: Test Planning
// Analyze test coverage requirements
mcp__claude -
flow__quality_assess({
target: 'test-coverage',
criteria: ['line-coverage', 'branch-coverage', 'function-coverage', 'edge-cases'],
});
// Identify test scenarios
mcp__claude -
flow__pattern_recognize({
data: testScenarios,
patterns: ['edge-case', 'boundary-condition', 'error-path', 'happy-path'],
});
// Store test plan
mcp__claude -
flow__memory_usage({
action: 'store',
key: 'test-plan-' + Date.now(),
value: JSON.stringify(testPlan),
namespace: 'testing/plans',
});
Phase 2: Parallel Test Execution
// Execute all test suites in parallel
mcp__claude -
flow__parallel_execute({
tasks: [
{
id: 'unit-tests',
command: 'npm run test:unit',
assignTo: 'Unit Test Coordinator',
},
{
id: 'integration-tests',
command: 'npm run test:integration',
assignTo: 'Integration Tester',
},
{
id: 'e2e-tests',
command: 'npm run test:e2e',
assignTo: 'E2E Tester',
},
{
id: 'performance-tests',
command: 'npm run test:performance',
assignTo: 'Performance Tester',
},
{
id: 'security-tests',
command: 'npm run test:security',
assignTo: 'Security Tester',
},
],
});
// Batch process test suites
mcp__claude -
flow__batch_process({
items: testSuites,
operation: 'execute-test-suite',
});
Phase 3: Performance and Security
// Run performance benchmarks
mcp__claude -
flow__benchmark_run({
suite: 'comprehensive-performance',
});
// Bottleneck analysis
mcp__claude -
flow__bottleneck_analyze({
component: 'application',
metrics: ['response-time', 'throughput', 'memory', 'cpu'],
});
// Security scanning
mcp__claude -
flow__security_scan({
target: 'application',
depth: 'comprehensive',
});
// Vulnerability analysis
mcp__claude -
flow__error_analysis({
logs: securityScanLogs,
});
Phase 4: Monitoring and Reporting
// Real-time test monitoring
mcp__claude -
flow__swarm_monitor({
swarmId: 'testing-swarm',
interval: 2000,
});
// Generate comprehensive test report
mcp__claude -
flow__performance_report({
format: 'detailed',
timeframe: 'current-run',
});
// Get test results
mcp__claude -
flow__task_results({
taskId: 'test-execution-001',
});
// Trend analysis
mcp__claude -
flow__trend_analysis({
metric: 'test-coverage',
period: '30d',
});
CLI Fallback
# Quick testing swarm
npx claude-flow swarm "test application comprehensively" \
--strategy testing \
--mode star \
--parallel \
--timeout 600
Pattern 4: Analysis Swarm
Purpose
Deep code and system analysis through specialized analyzers.
Architecture
// Initialize analysis swarm
mcp__claude -
flow__swarm_init({
topology: 'mesh',
maxAgents: 5,
strategy: 'adaptive',
});
// Spawn analysis specialists
const analysisTeam = [
{
type: 'analyst',
name: 'Code Analyzer',
capabilities: ['static-analysis', 'complexity-analysis', 'dead-code-detection'],
},
{
type: 'analyst',
name: 'Security Analyzer',
capabilities: ['security-scan', 'vulnerability-detection', 'dependency-audit'],
},
{
type: 'analyst',
name: 'Performance Analyzer',
capabilities: ['profiling', 'bottleneck-detection', 'optimization'],
},
{
type: 'analyst',
name: 'Architecture Analyzer',
capabilities: ['dependency-analysis', 'coupling-detection', 'modularity-assessment'],
},
{
type: 'documenter',
name: 'Analysis Reporter',
capabilities: ['reporting', 'visualization', 'recommendations'],
},
];
// Spawn all analysts
analysisTeam.forEach(analyst => {
mcp__claude -
flow__agent_spawn({
type: analyst.type,
name: analyst.name,
capabilities: analyst.capabilities,
});
});
Analysis Workflow
// Parallel analysis execution
mcp__claude -
flow__parallel_execute({
tasks: [
{ id: 'analyze-code', command: 'analyze codebase structure and quality' },
{ id: 'analyze-security', command: 'scan for security vulnerabilities' },
{ id: 'analyze-performance', command: 'identify performance bottlenecks' },
{ id: 'analyze-architecture', command: 'assess architectural patterns' },
],
});
// Generate comprehensive analysis report
mcp__claude -
flow__performance_report({
format: 'detailed',
timeframe: 'current',
});
// Cost analysis
mcp__claude -
flow__cost_analysis({
timeframe: '30d',
});
Advanced Techniques
Error Handling and Fault Tolerance
// Setup fault tolerance for all agents
mcp__claude -
flow__daa_fault_tolerance({
agentId: 'all',
strategy: 'auto-recovery',
});
// Error handling pattern
try {
(await mcp__claude) -
flow__task_orchestrate({
task: 'complex operation',
strategy: 'parallel',
priority: 'high',
});
} catch (error) {
// Check swarm health
const status = (await mcp__claude) - flow__swarm_status({});
// Analyze error patterns
(await mcp__claude) -
flow__error_analysis({
logs: [error.message],
});
// Auto-recovery attempt
if (status.healthy) {
(await mcp__claude) -
flow__task_orchestrate({
task: 'retry failed operation',
strategy: 'sequential',
});
}
}
Memory and State Management
// Cross-session persistence
mcp__claude -
flow__memory_persist({
sessionId: 'swarm-session-001',
});
// Namespace management for different swarms
mcp__claude -
flow__memory_namespace({
namespace: 'research-swarm',
action: 'create',
});
// Create state snapshot
mcp__claude -
flow__state_snapshot({
name: 'development-checkpoint-1',
});
// Restore from snapshot if needed
mcp__claude -
flow__context_restore({
snapshotId: 'development-checkpoint-1',
});
// Backup memory stores
mcp__claude -
flow__memory_backup({
path: '/workspaces/claude-code-flow/backups/swarm-memory.json',
});
Neural Pattern Learning
// Train neural patterns from successful workflows
mcp__claude -
flow__neural_train({
pattern_type: 'coordination',
training_data: JSON.stringify(successfulWorkflows),
epochs: 50,
});
// Adaptive learning from experience
mcp__claude -
flow__learning_adapt({
experience: {
workflow: 'research-to-report',
success: true,
duration: 3600,
quality: 0.95,
},
});
// Pattern recognition for optimization
mcp__claude -
flow__pattern_recognize({
data: workflowMetrics,
patterns: ['bottleneck', 'optimization-opportunity', 'efficiency-gain'],
});
Workflow Automation
// Create reusable workflow
mcp__claude -
flow__workflow_create({
name: 'full-stack-development',
steps: [
{ phase: 'design', agents: ['architect'] },
{ phase: 'implement', agents: ['backend-dev', 'frontend-dev'], parallel: true },
{ phase: 'test', agents: ['tester', 'security-tester'], parallel: true },
{ phase: 'review', agents: ['reviewer'] },
{ phase: 'deploy', agents: ['devops'] },
],
triggers: ['on-commit', 'scheduled-daily'],
});
// Setup automation rules
mcp__claude -
flow__automation_setup({
rules: [
{
trigger: 'file-changed',
pattern: '*.js',
action: 'run-tests',
},
{
trigger: 'PR-created',
action: 'code-review-swarm',
},
],
});
// Event-driven triggers
mcp__claude -
flow__trigger_setup({
events: ['code-commit', 'PR-merge', 'deployment'],
actions: ['test', 'analyze', 'document'],
});
Performance Optimization
// Topology optimization
mcp__claude -
flow__topology_optimize({
swarmId: 'current-swarm',
});
// Load balancing
mcp__claude -
flow__load_balance({
swarmId: 'development-swarm',
tasks: taskQueue,
});
// Agent coordination sync
mcp__claude -
flow__coordination_sync({
swarmId: 'development-swarm',
});
// Auto-scaling
mcp__claude -
flow__swarm_scale({
swarmId: 'development-swarm',
targetSize: 12,
});
Monitoring and Metrics
// Real-time swarm monitoring
mcp__claude -
flow__swarm_monitor({
swarmId: 'active-swarm',
interval: 3000,
});
// Collect comprehensive metrics
mcp__claude -
flow__metrics_collect({
components: ['agents', 'tasks', 'memory', 'performance'],
});
// Health monitoring
mcp__claude -
flow__health_check({
components: ['swarm', 'agents', 'neural', 'memory'],
});
// Usage statistics
mcp__claude -
flow__usage_stats({
component: 'swarm-orchestration',
});
// Trend analysis
mcp__claude -
flow__trend_analysis({
metric: 'agent-performance',
period: '7d',
});
Best Practices
1. Choosing the Right Topology
- Mesh: Research, brainstorming, collaborative analysis
- Hierarchical: Structured development, sequential workflows
- Star: Testing, validation, centralized coordination
- Ring: Pipeline processing, staged workflows
2. Agent Specialization
- Assign specific capabilities to each agent
- Avoid overlapping responsibilities
- Use coordination agents for complex workflows
- Leverage memory for agent communication
3. Parallel Execution
- Identify independent tasks for parallelization
- Use sequential execution for dependent tasks
- Monitor resource usage during parallel execution
- Implement proper error handling
4. Memory Management
- Use namespaces to organize memory
- Set appropriate TTL values
- Create regular backups
- Implement state snapshots for checkpoints
5. Monitoring and Optimization
- Monitor swarm health regularly
- Collect and analyze metrics
- Optimize topology based on performance
- Use neural patterns to learn from success
6. Error Recovery
- Implement fault tolerance strategies
- Use auto-recovery mechanisms
- Analyze error patterns
- Create fallback workflows
Real-World Examples
Example 1: AI Research Project
// Research AI trends, analyze findings, generate report
mcp__claude - flow__swarm_init({ topology: 'mesh', maxAgents: 6 });
// Spawn: 2 researchers, 2 analysts, 1 synthesizer, 1 documenter
// Parallel gather → Analyze patterns → Synthesize → Report
Example 2: Full-Stack Application
// Build complete web application with testing
mcp__claude - flow__swarm_init({ topology: 'hierarchical', maxAgents: 8 });
// Spawn: 1 architect, 2 devs, 1 db engineer, 2 testers, 1 reviewer, 1 devops
// Design → Parallel implement → Test → Review → Deploy
Example 3: Security Audit
// Comprehensive security analysis
mcp__claude - flow__swarm_init({ topology: 'star', maxAgents: 5 });
// Spawn: 1 coordinator, 1 code analyzer, 1 security scanner, 1 penetration tester, 1 reporter
// Parallel scan → Vulnerability analysis → Penetration test → Report
Example 4: Performance Optimization
// Identify and fix performance bottlenecks
mcp__claude - flow__swarm_init({ topology: 'mesh', maxAgents: 4 });
// Spawn: 1 profiler, 1 bottleneck analyzer, 1 optimizer, 1 tester
// Profile → Identify bottlenecks → Optimize → Validate
Troubleshooting
Common Issues
Issue: Swarm agents not coordinating properly Solution: Check topology selection, verify memory usage, enable monitoring
Issue: Parallel execution failing Solution: Verify task dependencies, check resource limits, implement error handling
Issue: Memory persistence not working Solution: Verify namespaces, check TTL settings, ensure backup configuration
Issue: Performance degradation Solution: Optimize topology, reduce agent count, analyze bottlenecks
Related Skills
sparc-methodology- Systematic development workflowgithub-integration- Repository management and automationneural-patterns- AI-powered coordination optimizationmemory-management- Cross-session state persistence
References
Version: 2.0.0 Last Updated: 2025-10-19 Skill Level: Advanced Estimated Learning Time: 2-3 hours