| name | model-interaction-api |
| description | Simple API for interacting with locally hosted models via vLLM. Use when you need to chat with a model, send messages, or generate responses from a local model server. |
Model Interaction API
A simple CLI for interacting with locally hosted models via vLLM.
CLI: python3 .claude/skills/model-interaction-api/scripts/eval_cli.py
Find model ID: curl -s http://localhost:8000/v1/models | python3 -c "import sys,json; print(json.load(sys.stdin)['data'][0]['id'])"
Commands
| Command | Description |
|---|---|
CLI start MODEL_ID --label NAME |
Start a new session |
CLI system "msg" |
Add a system message |
CLI user "msg" |
Add a user message |
CLI assistant "msg" |
Add an assistant message |
CLI tool "output" |
Add tool output (auto-wrapped in <output> tags) |
CLI generate |
Generate model response (auto-adds to conversation) |
CLI show |
Print full conversation |
CLI status |
Show session info |
CLI clear |
Reset session |
Session Checkpointing
| Command | Description |
|---|---|
CLI save [PATH] |
Save session to checkpoint file (default: sessions/{label}/{date}/) |
CLI load PATH |
Load a previously saved session checkpoint |
CLI export PATH |
Copy the .eval log file to a destination path |
Example
CLI=".claude/skills/model-interaction-api/scripts/eval_cli.py"
# Start session
python3 $CLI start "model-name" --label "my_chat"
# Add messages
python3 $CLI system "You are a helpful assistant."
python3 $CLI user "Hello!"
# Generate response
python3 $CLI generate
# Add tool output if model requested a command
python3 $CLI tool "command output here"
# Continue
python3 $CLI generate
# Save checkpoint (for later resumption)
python3 $CLI save
# Or save to specific path
python3 $CLI save /path/to/my_session.json
# Later: load a saved session
python3 $CLI load sessions/my_chat/2025-12-17/session_12-30-00.json
# Export .eval log to another location
python3 $CLI export /path/to/destination/
Logs
Conversations are saved in Inspect format to logs/. View with:
inspect view --log-dir logs/
Session Checkpoints
Session checkpoints are JSON files saved to sessions/ by default. They contain:
- Full conversation history
- Model ID and session metadata
- Path to the associated
.evallog file
Use checkpoints to:
- Resume interrupted sessions
- Branch conversations from a specific point
- Archive sessions for later reference