| name | dev-cli-development |
| description | Guide for developing AIDB dev-cli commands and services. Covers Click framework patterns, service architecture, command development, decorators, error handling, CommandExecutor, CliOutput, BaseService, BaseManager patterns. Use when working with src/aidb_cli/, adding CLI commands, creating services, or integrating with Docker/test/adapter systems. |
Dev-CLI Development Guide
Purpose
The AIDB dev-cli (src/aidb_cli/) is a Click-based command-line interface for AIDB development workflows. This skill guides developers in:
- Adding new CLI commands and command groups
- Creating reusable services following BaseService pattern
- Using custom decorators (@handle_exceptions, @require_repo_context)
- Integrating with Docker, test, and adapter systems
- Following Click framework best practices
- Proper error handling and output formatting
When to Use This Skill
Auto-activates when:
- Editing files in
src/aidb_cli/ - Mentioning "dev-cli", "CLI command", "Click", "CliOutput"
- Adding commands, services, or CLI utilities
- Working with test orchestration or Docker integration
Related Skills
When developing CLI commands, you may also need:
- testing-strategy - CLI orchestrates test execution via test coordinator service
- code-reuse-enforcement - CLI must use existing constants and avoid magic strings
Architecture Overview
For comprehensive architecture details, see docs/developer-guide/cli-reference.md and source code in src/aidb_cli/.
Component Structure
src/aidb_cli/
├── commands/ # CLI command definitions (13 modules)
├── services/ # Business logic services (41+ files)
├── managers/ # High-level orchestration (singleton pattern)
├── core/ # Decorators, utilities, constants, param types
└── generators/ # Code generation for test scenarios
Key Patterns
- Commands - Thin wrappers that delegate to services
- Services - Reusable business logic with CommandExecutor
- Managers - Singleton orchestrators for complex workflows
- Context Injection - Dependencies via Click's
ctx.obj - Unified Error Handling -
@handle_exceptionsdecorator - Dynamic Parameter Types - Custom types with shell completion
Quick Start: Adding a Command
Step 1: Create Command File
Create src/aidb_cli/commands/mycommand.py:
"""My new command description."""
import click
from aidb_cli.core.decorators import handle_exceptions
from aidb_logging import get_cli_logger
logger = get_cli_logger(__name__)
@click.group(name="mycommand")
@click.pass_context
def group(ctx: click.Context) -> None:
"""Command group description."""
pass
@group.command()
@click.option("--option", "-o", help="Option description")
@click.pass_context
@handle_exceptions
def subcommand(ctx: click.Context, option: str) -> None:
"""Subcommand description."""
# Get dependencies from context
output = ctx.obj.output
repo_root = ctx.obj.repo_root
executor = ctx.obj.command_executor
# Delegate to service
from aidb_cli.services.myservice import MyService
service = MyService(repo_root, executor)
result = service.do_something(option)
# User-facing output (via OutputStrategy)
output.success(f"Done: {result}")
Step 2: Register Command
In src/aidb_cli/cli.py:
from aidb_cli.commands import mycommand
# In main CLI setup
cli.add_command(mycommand.group)
Step 3: Test
./dev-cli mycommand subcommand --option value
Command Development Patterns
Decorator Order (CRITICAL)
Always stack decorators in this exact order:
@group.command() # 1. Click command
@click.option("--opt", "-o") # 2. Options
@click.pass_context # 3. Context (BEFORE handle_exceptions)
@handle_exceptions # 4. Error handling (LAST)
def command(ctx: click.Context, opt: str) -> None:
"""Implementation."""
Wrong order causes cryptic errors!
Custom Parameter Types
Use custom types for validation and autocompletion:
from aidb_cli.core.param_types import TestSuiteParamType
@click.option("--suite", type=TestSuiteParamType(), required=True)
def command(ctx: click.Context, suite: str) -> None:
"""Command with validated suite parameter."""
Available: TestSuiteParamType, LanguageParamType, DockerProfileParamType, TestMarkerParamType
For comprehensive Click patterns, see click-framework-patterns.md:
- Decorator stacking rules explained
- All custom parameter types with examples
- Context management patterns
- Error handling with @handle_exceptions
- Command groups and subcommands
- Advanced Click patterns
Service Development Patterns
BaseService Pattern (Recommended)
Most services extend BaseService for consistent dependency injection and utilities:
from aidb_cli.managers.base.service import BaseService
class MyService(BaseService):
def __init__(self, repo_root: Path, command_executor=None, ctx=None):
super().__init__(repo_root, command_executor, ctx)
# Inherited: command_executor, resolved_env, logging methods, path utilities
def do_something(self) -> str:
self.log_info("Starting operation...")
return self.command_executor.execute(["cmd"], cwd=self.repo_root).stdout
See service-patterns.md for comprehensive BaseService details, advanced patterns, and testing examples.
Standalone Service Pattern
For simple services without BaseService:
class MyService:
"""Service for my operations."""
def __init__(
self,
repo_root: Path,
command_executor: CommandExecutor,
logger: Logger | None = None
):
self.repo_root = repo_root
self.executor = command_executor
self.logger = logger or get_cli_logger(__name__)
def do_something(self, arg: str) -> str:
"""Do something useful."""
from aidb.common.errors import AidbError
result = self.executor.execute(["command", arg], cwd=self.repo_root)
if result.returncode != 0:
raise AidbError(f"Operation failed: {result.stderr}")
return result.stdout.strip()
Key principles:
- Accept dependencies in
__init__(testable) - Use
CommandExecutorfor all subprocess calls - Log with
get_cli_logger(__name__) - Raise exceptions for errors
For comprehensive service patterns, see service-patterns.md:
- BaseService detailed patterns
- CommandExecutor comprehensive guide
- Service composition and singletons
- Testing services
- Real examples from AIDB codebase
Error Handling
@handle_exceptions Decorator
This decorator provides unified error handling:
@handle_exceptions
def command(ctx: click.Context) -> None:
"""Command with automatic error handling."""
# Just raise errors naturally - decorator handles:
# - KeyboardInterrupt (cleanup Docker resources)
# - AidbError (formatted error output)
# - FileNotFoundError (specific exit code)
# - PermissionError (specific exit code)
# - Generic exceptions (traceback in verbose mode)
if not valid:
from aidb.common.errors import AidbError
raise AidbError("Validation failed")
Exit Codes
Use standard exit codes:
from aidb_cli.core.constants import ExitCode
if error:
CliOutput.error("Operation failed")
ctx.exit(ExitCode.GENERAL_ERROR) # 1
if not found:
ctx.exit(ExitCode.NOT_FOUND) # 2
if config_error:
ctx.exit(ExitCode.CONFIG_ERROR) # 3
Output and Logging
OutputStrategy for Commands
Commands use ctx.obj.output (OutputStrategy) for verbosity-aware user-facing output:
output = ctx.obj.output
output.success("Operation completed") # Always visible (green)
output.error("Operation failed") # Always visible (red, stderr)
output.warning("Potential issue") # Always visible (yellow)
output.plain("Regular message") # Always visible (no color)
output.section("Title", Icons.ROCKET) # Always visible (with separator)
output.info("Verbose detail") # Only with -v flag
output.debug("Debug trace") # Only with -vvv flag
CliOutput for Services/Managers
Services and managers (without Click context) use the static CliOutput utility:
from aidb_cli.core.utils import CliOutput
CliOutput.success("Operation completed successfully")
CliOutput.error("Operation failed")
Logger for Debugging
Use logger for debugging/trace information:
from aidb_logging import get_cli_logger
logger = get_cli_logger(__name__)
logger.debug("Detailed debugging info")
logger.info("General info")
Rule: Commands → ctx.obj.output, Services → CliOutput, Debugging → logger
Verbosity Levels
CLI supports three verbosity levels via global flags:
| Flag | Log Level | Enabled Features |
|---|---|---|
| (none) | INFO | Standard output only |
-v |
DEBUG | + AIDB_ADAPTER_TRACE=1 |
-vvv |
TRACE | + AIDB_ADAPTER_TRACE=1 + AIDB_CONSOLE_LOGGING=1 |
What each level includes:
- INFO: User-facing milestones (session started, breakpoint hit, etc.)
- DEBUG: Operation summaries, state transitions, adapter lifecycle
- TRACE: Full DAP/LSP JSON payloads, receiver timing, protocol details
Examples:
./dev-cli test run -s unit # INFO level
./dev-cli -v test run -s unit # DEBUG + adapter traces
./dev-cli -vvv test run -s unit # TRACE + protocol payloads
Use -vvv for maximum observability when debugging DAP/LSP protocol issues.
Common Patterns
Import Organization
Follow project standard: stdlib → third-party → AIDB core → CLI → logging. All imports at top unless avoiding circular dependency.
Avoiding circular imports: Use TYPE_CHECKING for type-only imports:
from typing import TYPE_CHECKING
import click
if TYPE_CHECKING:
from aidb_cli.cli import Context # Only imported for type checking
See CLAUDE.md for full style details.
Service Instantiation in Commands
@group.command()
@click.pass_context
@handle_exceptions
def command(ctx: click.Context) -> None:
"""Command that uses a service."""
# Instantiate service with dependencies from context
from aidb_cli.services.adapter.adapter_build_service import AdapterBuildService
service = AdapterBuildService(
repo_root=ctx.obj.repo_root,
command_executor=ctx.obj.command_executor
)
# Call service method
result = service.build_locally(["python"], verbose=False)
# Output result
CliOutput.success(f"Built adapter: {result}")
Common Pitfalls
1. Decorator Order
Wrong: @handle_exceptions before @click.pass_context
Right: @click.pass_context then @handle_exceptions
2. Using subprocess Directly
Wrong: subprocess.run(["cmd"])
Right: ctx.obj.command_executor.execute(["cmd"])
3. Mixing Output Types
Wrong: print("Success") or logger.info("User message")
Right: CliOutput.success("Message") for users, logger.debug() for debugging
4. Hardcoded Paths
Wrong: Path("/path/to/repo")
Right: ctx.obj.repo_root / "relative/path"
Real Code Examples
Example 1: Simple Command
From src/aidb_cli/commands/docker.py:
@group.command()
@click.option("--profile", "-p", type=DockerProfileParamType(), default=None)
@click.option("--no-cache", is_flag=True, help="Build without cache")
@click.pass_context
@handle_exceptions
def build(ctx: click.Context, profile: str | None, no_cache: bool) -> None:
"""Build Docker images."""
from aidb_cli.services.docker.docker_build_service import DockerBuildService
service = DockerBuildService(
repo_root=ctx.obj.repo_root,
command_executor=ctx.obj.command_executor
)
result = service.build_images(profile=profile, no_cache=no_cache)
CliOutput.success(f"Build complete: {result}")
Example 2: Service with CommandExecutor
See real implementation: src/aidb_cli/services/docker/docker_build_service.py
Key pattern - services delegate to CommandExecutor and raise exceptions on failure:
class DockerBuildService:
def __init__(self, repo_root: Path, command_executor: CommandExecutor):
self.repo_root = repo_root
self.executor = command_executor
def build_images(self, profile: str | None = None) -> int:
"""Build Docker images."""
from aidb.common.errors import AidbError
cmd = ["docker-compose", "build"]
if profile:
cmd.extend(["--profile", profile])
result = self.executor.execute(cmd, cwd=self.repo_root)
if result.returncode != 0:
raise AidbError(f"Build failed: {result.stderr}")
return 0
Testing Your Changes
Run CLI Locally
./dev-cli mycommand subcommand --option value # Run command
./dev-cli -v mycommand subcommand # Verbose mode
./dev-cli --dry-run mycommand subcommand # Dry run (no execution)
Unit Testing Services
Test services by mocking CommandExecutor:
from unittest.mock import Mock
from pathlib import Path
def test_my_service():
"""Test service logic without executing commands."""
executor = Mock()
executor.execute.return_value = Mock(returncode=0, stdout="success")
service = MyService(Path("/tmp"), executor)
result = service.do_something("arg")
assert result == "success"
executor.execute.assert_called_once_with(["command", "arg"], cwd=Path("/tmp"))
See actual test examples: src/tests/aidb_cli/commands/integration/ for command integration tests and src/tests/aidb_cli/services/ for service unit tests
Service Discovery Guide
Common tasks and which services to use:
| Task | Service | Location |
|---|---|---|
| Build Docker images | DockerBuildService |
services/docker/docker_build_service.py |
| Generate docker-compose.yaml | ComposeGeneratorService |
services/docker/compose_generator_service.py |
| Track Docker image checksums | DockerImageChecksumService |
services/docker/docker_image_checksum_service.py |
| Track framework deps checksums | FrameworkDepsChecksumService |
services/docker/framework_deps_checksum_service.py |
| Check Docker health | DockerHealthService |
services/docker/docker_health_service.py |
| Run tests | TestCoordinatorService |
services/test/test_coordinator_service.py |
| Build adapters | AdapterBuildService |
services/adapter/adapter_build_service.py |
| Execute commands | CommandExecutor |
services/command_executor/__init__.py |
| Generate test programs | Generator |
generators/core/generator.py |
Full service list: See src/aidb_cli/services/ subdirectories - docker/ (Docker operations), test/ (test execution), adapter/ (adapter building), docs/ (documentation), command_executor/ (subprocess execution)
Resource Files
For deeper dives into specific topics, see:
- service-patterns.md - Comprehensive service architecture patterns, CommandExecutor guide, testing, real examples
- click-framework-patterns.md - Click decorator stacking, custom parameter types, context management, error handling
- docker-compose-generation.md - Template-based docker-compose.yaml generation, Jinja2 templates, languages.yaml configuration, hash-based cache invalidation
- checksum-services.md - ChecksumServiceBase pattern, DockerImageChecksumService, FrameworkDepsChecksumService, container lifecycle tracking, creating custom checksum services