Claude Code Plugins

Community-maintained marketplace

Feedback

python-performance-optimization

@ai-pilo/agents-backend-architecture
0
0

Profile and optimize Python code using cProfile, memory profilers, and performance best practices. Use when debugging slow Python code, optimizing bottlenecks, or improving application performance.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name python-performance-optimization
description Profile and optimize Python code using cProfile, memory profilers, and performance best practices. Use when debugging slow Python code, optimizing bottlenecks, or improving application performance.

Python Performance Optimization

Comprehensive guide to profiling, analyzing, and optimizing Python code for better performance, including CPU profiling, memory optimization, and implementation best practices.

When to Use This Skill

  • Identifying performance bottlenecks in Python applications
  • Reducing application latency and response times
  • Optimizing CPU-intensive operations
  • Reducing memory consumption and memory leaks
  • Improving database query performance
  • Optimizing I/O operations
  • Speeding up data processing pipelines
  • Implementing high-performance algorithms
  • Profiling production applications

Core Concepts

1. Profiling Types

  • CPU Profiling: Identify time-consuming functions
  • Memory Profiling: Track memory allocation and leaks
  • Line Profiling: Profile at line-by-line granularity
  • Call Graph: Visualize function call relationships

2. Performance Metrics

  • Execution Time: How long operations take
  • Memory Usage: Peak and average memory consumption
  • CPU Utilization: Processor usage patterns
  • I/O Wait: Time spent on I/O operations

3. Optimization Strategies

  • Algorithmic: Better algorithms and data structures
  • Implementation: More efficient code patterns
  • Parallelization: Multi-threading/processing
  • Caching: Avoid redundant computation
  • Native Extensions: C/Rust for critical paths

Quick Start

Basic Timing

import time

def measure_time():
    """Simple timing measurement."""
    start = time.time()

    # Your code here
    result = sum(range(1000000))

    elapsed = time.time() - start
    print(f"Execution time: {elapsed:.4f} seconds")
    return result

# Better: use timeit for accurate measurements
import timeit

execution_time = timeit.timeit(
    "sum(range(1000000))",
    number=100
)
print(f"Average time: {execution_time/100:.6f} seconds")

Profiling Tools

Pattern 1: cProfile - CPU Profiling

import cProfile
import pstats
from pstats import SortKey

def slow_function():
    """Function to profile."""
    total = 0
    for i in range(1000000):
        total += i
    return total

def another_function():
    """Another function."""
    return [i**2 for i in range(100000)]

def main():
    """Main function to profile."""
    result1 = slow_function()
    result2 = another_function()
    return result1, result2

# Profile the code
if __name__ == "__main__":
    profiler = cProfile.Profile()
    profiler.enable()

    main()

    profiler.disable()

    # Print stats
    stats = pstats.Stats(profiler)
    stats.sort_stats(SortKey.CUMULATIVE)
    stats.print_stats(10)  # Top 10 functions

    # Save to file for later analysis
    stats.dump_stats("profile_output.prof")

Command-line profiling:

# Profile a script
python -m cProfile -o output.prof script.py

# View results
python -m pstats output.prof
# In pstats:
# sort cumtime
# stats 10

Pattern 2: line_profiler - Line-by-Line Profiling

# Install: pip install line-profiler

# Add @profile decorator (line_profiler provides this)
@profile
def process_data(data):
    """Process data with line profiling."""
    result = []
    for item in data:
        processed = item * 2
        result.append(processed)
    return result

# Run with:
# kernprof -l -v script.py

Manual line profiling:

from line_profiler import LineProfiler

def process_data(data):
    """Function to profile."""
    result = []
    for item in data:
        processed = item * 2
        result.append(processed)
    return result

if __name__ == "__main__":
    lp = LineProfiler()
    lp.add_function(process_data)

    data = list(range(100000))

    lp_wrapper = lp(process_data)
    lp_wrapper(data)

    lp.print_stats()

Pattern 3: memory_profiler - Memory Usage

# Install: pip install memory-profiler

from memory_profiler import profile

@profile
def memory_intensive():
    """Function that uses lots of memory."""
    # Create large list
    big_list = [i for i in range(1000000)]

    # Create large dict
    big_dict = {i: i**2 for i in range(100000)}

    # Process data
    result = sum(big_list)

    return result

if __name__ == "__main__":
    memory_intensive()

# Run with:
# python -m memory_profiler script.py

Pattern 4: py-spy - Production Profiling

# Install: pip install py-spy

# Profile a running Python process
py-spy top --pid 12345

# Generate flamegraph
py-spy record -o profile.svg --pid 12345

# Profile a script
py-spy record -o profile.svg -- python script.py

# Dump current call stack
py-spy dump --pid 12345

Optimization Patterns

Pattern 5: List Comprehensions vs Loops

import timeit

# Slow: Traditional loop
def slow_squares(n):
    """Create list of squares using loop."""
    result = []
    for i in range(n):
        result.append(i**2)
    return result

# Fast: List comprehension
def fast_squares(n):
    """Create list of squares using comprehension."""
    return [i**2 for i in range(n)]

# Benchmark
n = 100000

slow_time = timeit.timeit(lambda: slow_squares(n), number=100)
fast_time = timeit.timeit(lambda: fast_squares(n), number=100)

print(f"Loop: {slow_time:.4f}s")
print(f"Comprehension: {fast_time:.4f}s")
print(f"Speedup: {slow_time/fast_time:.2f}x")

# Even faster for simple operations: map
def faster_squares(n):
    """Use map for even better performance."""
    return list(map(lambda x: x**2, range(n)))

Pattern 6: Generator Expressions for Memory

import sys

def list_approach():
    """Memory-intensive list."""
    data = [i**2 for i in range(1000000)]
    return sum(data)

def generator_approach():
    """Memory-efficient generator."""
    data = (i**2 for i in range(1000000))
    return sum(data)

# Memory comparison
list_data = [i for i in range(1000000)]
gen_data = (i for i in range(1000000))

print(f"List size: {sys.getsizeof(list_data)} bytes")
print(f"Generator size: {sys.getsizeof(gen_data)} bytes")

# Generators use constant memory regardless of size

Pattern 7: String Concatenation

import timeit

def slow_concat(items):
    """Slow string concatenation."""
    result = ""
    for item in items:
        result += str(item)
    return result

def fast_concat(items):
    """Fast string concatenation with join."""
    return "".join(str(item) for item in items)

def faster_concat(items):
    """Even faster with list."""
    parts = [str(item) for item in items]
    return "".join(parts)

items = list(range(10000))

# Benchmark
slow = timeit.timeit(lambda: slow_concat(items), number=100)
fast = timeit.timeit(lambda: fast_concat(items), number=100)
faster = timeit.timeit(lambda: faster_concat(items), number=100)

print(f"Concatenation (+): {slow:.4f}s")
print(f"Join (generator): {fast:.4f}s")
print(f"Join (list): {faster:.4f}s")

Pattern 8: Dictionary Lookups vs List Searches

import timeit

# Create test data
size = 10000
items = list(range(size))
lookup_dict = {i: i for i in range(size)}

def list_search(items, target):
    """O(n) search in list."""
    return target in items

def dict_search(lookup_dict, target):
    """O(1) search in dict."""
    return target in lookup_dict

target = size - 1  # Worst case for list

# Benchmark
list_time = timeit.timeit(
    lambda: list_search(items, target),
    number=1000
)
dict_time = timeit.timeit(
    lambda: dict_search(lookup_dict, target),
    number=1000
)

print(f"List search: {list_time:.6f}s")
print(f"Dict search: {dict_time:.6f}s")
print(f"Speedup: {list_time/dict_time:.0f}x")

Pattern 9: Local Variable Access

import timeit

# Global variable (slow)
GLOBAL_VALUE = 100

def use_global():
    """Access global variable."""
    total = 0
    for i in range(10000):
        total += GLOBAL_VALUE
    return total

def use_local():
    """Use local variable."""
    local_value = 100
    total = 0
    for i in range(10000):
        total += local_value
    return total

# Local is faster
global_time = timeit.timeit(use_global, number=1000)
local_time = timeit.timeit(use_local, number=1000)

print(f"Global access: {global_time:.4f}s")
print(f"Local access: {local_time:.4f}s")
print(f"Speedup: {global_time/local_time:.2f}x")

Pattern 10: Function Call Overhead

import timeit

def calculate_inline():
    """Inline calculation."""
    total = 0
    for i in range(10000):
        total += i * 2 + 1
    return total

def helper_function(x):
    """Helper function."""
    return x * 2 + 1

def calculate_with_function():
    """Calculation with function calls."""
    total = 0
    for i in range(10000):
        total += helper_function(i)
    return total

# Inline is faster due to no call overhead
inline_time = timeit.timeit(calculate_inline, number=1000)
function_time = timeit.timeit(calculate_with_function, number=1000)

print(f"Inline: {inline_time:.4f}s")
print(f"Function calls: {function_time:.4f}s")

Advanced Optimization

Pattern 11: NumPy for Numerical Operations

import timeit
import numpy as np

def python_sum(n):
    """Sum using pure Python."""
    return sum(range(n))

def numpy_sum(n):
    """Sum using NumPy."""
    return np.arange(n).sum()

n = 1000000

python_time = timeit.timeit(lambda: python_sum(n), number=100)
numpy_time = timeit.timeit(lambda: numpy_sum(n), number=100)

print(f"Python: {python_time:.4f}s")
print(f"NumPy: {numpy_time:.4f}s")
print(f"Speedup: {python_time/numpy_time:.2f}x")

# Vectorized operations
def python_multiply():
    """Element-wise multiplication in Python."""
    a = list(range(100000))
    b = list(range(100000))
    return [x * y for x, y in zip(a, b)]

def numpy_multiply():
    """Vectorized multiplication in NumPy."""
    a = np.arange(100000)
    b = np.arange(100000)
    return a * b

py_time = timeit.timeit(python_multiply, number=100)
np_time = timeit.timeit(numpy_multiply, number=100)

print(f"\nPython multiply: {py_time:.4f}s")
print(f"NumPy multiply: {np_time:.4f}s")
print(f"Speedup: {py_time/np_time:.2f}x")

Pattern 12: Caching with functools.lru_cache

from functools import lru_cache
import timeit

def fibonacci_slow(n):
    """Recursive fibonacci without caching."""
    if n < 2:
        return n
    return fibonacci_slow(n-1) + fibonacci_slow(n-2)

@lru_cache(maxsize=None)
def fibonacci_fast(n):
    """Recursive fibonacci with caching."""
    if n < 2:
        return n
    return fibonacci_fast(n-1) + fibonacci_fast(n-2)

# Massive speedup for recursive algorithms
n = 30

slow_time = timeit.timeit(lambda: fibonacci_slow(n), number=1)
fast_time = timeit.timeit(lambda: fibonacci_fast(n), number=1000)

print(f"Without cache (1 run): {slow_time:.4f}s")
print(f"With cache (1000 runs): {fast_time:.4f}s")

# Cache info
print(f"Cache info: {fibonacci_fast.cache_info()}")

Pattern 13: Using slots for Memory

import sys

class RegularClass:
    """Regular class with __dict__."""
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z

class SlottedClass:
    """Class with __slots__ for memory efficiency."""
    __slots__ = ['x', 'y', 'z']

    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z

# Memory comparison
regular = RegularClass(1, 2, 3)
slotted = SlottedClass(1, 2, 3)

print(f"Regular class size: {sys.getsizeof(regular)} bytes")
print(f"Slotted class size: {sys.getsizeof(slotted)} bytes")

# Significant savings with many instances
regular_objects = [RegularClass(i, i+1, i+2) for i in range(10000)]
slotted_objects = [SlottedClass(i, i+1, i+2) for i in range(10000)]

print(f"\nMemory for 10000 regular objects: ~{sys.getsizeof(regular) * 10000} bytes")
print(f"Memory for 10000 slotted objects: ~{sys.getsizeof(slotted) * 10000} bytes")

Pattern 14: Multiprocessing for CPU-Bound Tasks

import multiprocessing as mp
import time

def cpu_intensive_task(n):
    """CPU-intensive calculation."""
    return sum(i**2 for i in range(n))

def sequential_processing():
    """Process tasks sequentially."""
    start = time.time()
    results = [cpu_intensive_task(1000000) for _ in range(4)]
    elapsed = time.time() - start
    return elapsed, results

def parallel_processing():
    """Process tasks in parallel."""
    start = time.time()
    with mp.Pool(processes=4) as pool:
        results = pool.map(cpu_intensive_task, [1000000] * 4)
    elapsed = time.time() - start
    return elapsed, results

if __name__ == "__main__":
    seq_time, seq_results = sequential_processing()
    par_time, par_results = parallel_processing()

    print(f"Sequential: {seq_time:.2f}s")
    print(f"Parallel: {par_time:.2f}s")
    print(f"Speedup: {seq_time/par_time:.2f}x")

Pattern 15: Async I/O for I/O-Bound Tasks

import asyncio
import aiohttp
import time
import requests

urls = [
    "https://httpbin.org/delay/1",
    "https://httpbin.org/delay/1",
    "https://httpbin.org/delay/1",
    "https://httpbin.org/delay/1",
]

def synchronous_requests():
    """Synchronous HTTP requests."""
    start = time.time()
    results = []
    for url in urls:
        response = requests.get(url)
        results.append(response.status_code)
    elapsed = time.time() - start
    return elapsed, results

async def async_fetch(session, url):
    """Async HTTP request."""
    async with session.get(url) as response:
        return response.status

async def asynchronous_requests():
    """Asynchronous HTTP requests."""
    start = time.time()
    async with aiohttp.ClientSession() as session:
        tasks = [async_fetch(session, url) for url in urls]
        results = await asyncio.gather(*tasks)
    elapsed = time.time() - start
    return elapsed, results

# Async is much faster for I/O-bound work
sync_time, sync_results = synchronous_requests()
async_time, async_results = asyncio.run(asynchronous_requests())

print(f"Synchronous: {sync_time:.2f}s")
print(f"Asynchronous: {async_time:.2f}s")
print(f"Speedup: {sync_time/async_time:.2f}x")

Database Optimization

Pattern 16: Batch Database Operations

import sqlite3
import time

def create_db():
    """Create test database."""
    conn = sqlite3.connect(":memory:")
    conn.execute("CREATE TABLE users (id INTEGER PRIMARY KEY, name TEXT)")
    return conn

def slow_inserts(conn, count):
    """Insert records one at a time."""
    start = time.time()
    cursor = conn.cursor()
    for i in range(count):
        cursor.execute("INSERT INTO users (name) VALUES (?)", (f"User {i}",))
        conn.commit()  # Commit each insert
    elapsed = time.time() - start
    return elapsed

def fast_inserts(conn, count):
    """Batch insert with single commit."""
    start = time.time()
    cursor = conn.cursor()
    data = [(f"User {i}",) for i in range(count)]
    cursor.executemany("INSERT INTO users (name) VALUES (?)", data)
    conn.commit()  # Single commit
    elapsed = time.time() - start
    return elapsed

# Benchmark
conn1 = create_db()
slow_time = slow_inserts(conn1, 1000)

conn2 = create_db()
fast_time = fast_inserts(conn2, 1000)

print(f"Individual inserts: {slow_time:.4f}s")
print(f"Batch insert: {fast_time:.4f}s")
print(f"Speedup: {slow_time/fast_time:.2f}x")

Pattern 17: Query Optimization

# Use indexes for frequently queried columns
"""
-- Slow: No index
SELECT * FROM users WHERE email = 'user@example.com';

-- Fast: With index
CREATE INDEX idx_users_email ON users(email);
SELECT * FROM users WHERE email = 'user@example.com';
"""

# Use query planning
import sqlite3

conn = sqlite3.connect("example.db")
cursor = conn.cursor()

# Analyze query performance
cursor.execute("EXPLAIN QUERY PLAN SELECT * FROM users WHERE email = ?", ("test@example.com",))
print(cursor.fetchall())

# Use SELECT only needed columns
# Slow: SELECT *
# Fast: SELECT id, name

Memory Optimization

Pattern 18: Detecting Memory Leaks

import tracemalloc
import gc

def memory_leak_example():
    """Example that leaks memory."""
    leaked_objects = []

    for i in range(100000):
        # Objects added but never removed
        leaked_objects.append([i] * 100)

    # In real code, this would be an unintended reference

def track_memory_usage():
    """Track memory allocations."""
    tracemalloc.start()

    # Take snapshot before
    snapshot1 = tracemalloc.take_snapshot()

    # Run code
    memory_leak_example()

    # Take snapshot after
    snapshot2 = tracemalloc.take_snapshot()

    # Compare
    top_stats = snapshot2.compare_to(snapshot1, 'lineno')

    print("Top 10 memory allocations:")
    for stat in top_stats[:10]:
        print(stat)

    tracemalloc.stop()

# Monitor memory
track_memory_usage()

# Force garbage collection
gc.collect()

Pattern 19: Iterators vs Lists

import sys

def process_file_list(filename):
    """Load entire file into memory."""
    with open(filename) as f:
        lines = f.readlines()  # Loads all lines
        return sum(1 for line in lines if line.strip())

def process_file_iterator(filename):
    """Process file line by line."""
    with open(filename) as f:
        return sum(1 for line in f if line.strip())

# Iterator uses constant memory
# List loads entire file into memory

Pattern 20: Weakref for Caches

import weakref

class CachedResource:
    """Resource that can be garbage collected."""
    def __init__(self, data):
        self.data = data

# Regular cache prevents garbage collection
regular_cache = {}

def get_resource_regular(key):
    """Get resource from regular cache."""
    if key not in regular_cache:
        regular_cache[key] = CachedResource(f"Data for {key}")
    return regular_cache[key]

# Weak reference cache allows garbage collection
weak_cache = weakref.WeakValueDictionary()

def get_resource_weak(key):
    """Get resource from weak cache."""
    resource = weak_cache.get(key)
    if resource is None:
        resource = CachedResource(f"Data for {key}")
        weak_cache[key] = resource
    return resource

# When no strong references exist, objects can be GC'd

Benchmarking Tools

Custom Benchmark Decorator

import time
from functools import wraps

def benchmark(func):
    """Decorator to benchmark function execution."""
    @wraps(func)
    def wrapper(*args, **kwargs):
        start = time.perf_counter()
        result = func(*args, **kwargs)
        elapsed = time.perf_counter() - start
        print(f"{func.__name__} took {elapsed:.6f} seconds")
        return result
    return wrapper

@benchmark
def slow_function():
    """Function to benchmark."""
    time.sleep(0.5)
    return sum(range(1000000))

result = slow_function()

Performance Testing with pytest-benchmark

# Install: pip install pytest-benchmark

def test_list_comprehension(benchmark):
    """Benchmark list comprehension."""
    result = benchmark(lambda: [i**2 for i in range(10000)])
    assert len(result) == 10000

def test_map_function(benchmark):
    """Benchmark map function."""
    result = benchmark(lambda: list(map(lambda x: x**2, range(10000))))
    assert len(result) == 10000

# Run with: pytest test_performance.py --benchmark-compare

Best Practices

  1. Profile before optimizing - Measure to find real bottlenecks
  2. Focus on hot paths - Optimize code that runs most frequently
  3. Use appropriate data structures - Dict for lookups, set for membership
  4. Avoid premature optimization - Clarity first, then optimize
  5. Use built-in functions - They're implemented in C
  6. Cache expensive computations - Use lru_cache
  7. Batch I/O operations - Reduce system calls
  8. Use generators for large datasets
  9. Consider NumPy for numerical operations
  10. Profile production code - Use py-spy for live systems

Common Pitfalls

  • Optimizing without profiling
  • Using global variables unnecessarily
  • Not using appropriate data structures
  • Creating unnecessary copies of data
  • Not using connection pooling for databases
  • Ignoring algorithmic complexity
  • Over-optimizing rare code paths
  • Not considering memory usage

Resources

  • cProfile: Built-in CPU profiler
  • memory_profiler: Memory usage profiling
  • line_profiler: Line-by-line profiling
  • py-spy: Sampling profiler for production
  • NumPy: High-performance numerical computing
  • Cython: Compile Python to C
  • PyPy: Alternative Python interpreter with JIT

Performance Checklist

  • Profiled code to identify bottlenecks
  • Used appropriate data structures
  • Implemented caching where beneficial
  • Optimized database queries
  • Used generators for large datasets
  • Considered multiprocessing for CPU-bound tasks
  • Used async I/O for I/O-bound tasks
  • Minimized function call overhead in hot loops
  • Checked for memory leaks
  • Benchmarked before and after optimization