Claude Code Plugins

Community-maintained marketplace

Feedback

pdf-processor

@aig787/agpm
0
0

Process PDF files for text extraction, form filling, and document analysis. Use when you need to extract content from PDFs, fill forms, or analyze document structure.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pdf-processor
description Process PDF files for text extraction, form filling, and document analysis. Use when you need to extract content from PDFs, fill forms, or analyze document structure.

PDF Processor

Instructions

When processing PDF files, follow these steps based on your specific needs:

1. Identify Processing Type

Determine what you need to do with the PDF:

  • Extract text content
  • Fill form fields
  • Extract images or tables
  • Merge or split PDFs
  • Add annotations or watermarks
  • Convert to other formats

2. Text Extraction

Basic Text Extraction

import PyPDF2
import pdfplumber

# Method 1: Using PyPDF2
def extract_text_pypdf2(file_path):
    with open(file_path, 'rb') as file:
        reader = PyPDF2.PdfReader(file)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
    return text

# Method 2: Using pdfplumber (better for tables)
def extract_text_pdfplumber(file_path):
    with pdfplumber.open(file_path) as pdf:
        text = ""
        for page in pdf.pages:
            text += page.extract_text() or ""
    return text

Advanced Text Extraction

  • Preserve formatting and layout
  • Handle multi-column documents
  • Extract text from specific regions
  • Process scanned PDFs with OCR

3. Form Processing

Form Field Detection

def detect_form_fields(file_path):
    reader = PyPDF2.PdfReader(file_path)
    fields = {}
    if reader.get_fields():
        for field_name, field in reader.get_fields().items():
            fields[field_name] = {
                'type': field.field_type,
                'value': field.value,
                'required': field.required if hasattr(field, 'required') else False
            }
    return fields

def fill_form_fields(file_path, output_path, field_data):
    reader = PyPDF2.PdfReader(file_path)
    writer = PyPDF2.PdfWriter()

    for page in reader.pages:
        writer.add_page(page)

    if writer.get_fields():
        for field_name, value in field_data.items():
            if field_name in writer.get_fields():
                writer.get_fields()[field_name].value = value

    with open(output_path, 'wb') as output_file:
        writer.write(output_file)

Common Form Types

  • Application forms
  • Invoices and receipts
  • Survey forms
  • Legal documents
  • Medical forms

4. Content Analysis

Structure Analysis

def analyze_pdf_structure(file_path):
    with pdfplumber.open(file_path) as pdf:
        analysis = {
            'pages': len(pdf.pages),
            'has_images': False,
            'has_tables': False,
            'has_forms': False,
            'text_density': [],
            'sections': []
        }

        for i, page in enumerate(pdf.pages):
            # Check for images
            if page.images:
                analysis['has_images'] = True

            # Check for tables
            if page.extract_tables():
                analysis['has_tables'] = True

            # Calculate text density
            text = page.extract_text()
            if text:
                density = len(text) / (page.width * page.height)
                analysis['text_density'].append(density)

            # Detect section headers (basic heuristic)
            lines = text.split('\n') if text else []
            for line in lines:
                if line.isupper() and len(line) < 50:
                    analysis['sections'].append({
                        'page': i + 1,
                        'title': line.strip()
                    })

    return analysis

Table Extraction

def extract_tables(file_path):
    tables = []
    with pdfplumber.open(file_path) as pdf:
        for page_num, page in enumerate(pdf.pages):
            page_tables = page.extract_tables()
            for table in page_tables:
                tables.append({
                    'page': page_num + 1,
                    'data': table,
                    'rows': len(table),
                    'columns': len(table[0]) if table else 0
                })
    return tables

5. PDF Manipulation

Merge PDFs

from PyPDF2 import PdfMerger

def merge_pdfs(file_paths, output_path):
    merger = PdfMerger()
    for path in file_paths:
        merger.append(path)
    merger.write(output_path)
    merger.close()

Split PDF

def split_pdf(file_path, output_dir):
    reader = PyPDF2.PdfReader(file_path)
    for i, page in enumerate(reader.pages):
        writer = PyPDF2.PdfWriter()
        writer.add_page(page)
        output_path = f"{output_dir}/page_{i+1}.pdf"
        with open(output_path, 'wb') as output_file:
            writer.write(output_file)

Add Watermark

def add_watermark(input_path, output_path, watermark_text):
    reader = PyPDF2.PdfReader(input_path)
    writer = PyPDF2.PdfWriter()

    for page in reader.pages:
        writer.add_page(page)
        # Add watermark logic here
        # This requires additional libraries like reportlab

    with open(output_path, 'wb') as output_file:
        writer.write(output_file)

6. OCR for Scanned PDFs

Using Tesseract OCR

import pytesseract
from PIL import Image
import fitz  # PyMuPDF

def ocr_pdf(file_path):
    doc = fitz.open(file_path)
    text = ""

    for page_num in range(len(doc)):
        page = doc.load_page(page_num)
        pix = page.get_pixmap()
        img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
        text += pytesseract.image_to_string(img)

    return text

7. Error Handling

Common Issues

  • Password-protected PDFs
  • Corrupted files
  • Unsupported formats
  • Memory issues with large files
  • Encoding problems

Error Handling Pattern

import logging

def process_pdf_safely(file_path, processing_func):
    try:
        # Check if file exists
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"File not found: {file_path}")

        # Check file size
        file_size = os.path.getsize(file_path)
        if file_size > 100 * 1024 * 1024:  # 100MB limit
            logging.warning(f"Large file detected: {file_size} bytes")

        # Process the file
        result = processing_func(file_path)
        return result

    except Exception as e:
        logging.error(f"Error processing PDF {file_path}: {str(e)}")
        raise

8. Performance Optimization

For Large Files

  • Process pages in chunks
  • Use generators for memory efficiency
  • Implement progress tracking
  • Consider parallel processing

Batch Processing

import concurrent.futures
import os

def batch_process_pdfs(directory, processing_func, max_workers=4):
    pdf_files = [f for f in os.listdir(directory) if f.endswith('.pdf')]

    with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
        futures = []
        for pdf_file in pdf_files:
            file_path = os.path.join(directory, pdf_file)
            future = executor.submit(processing_func, file_path)
            futures.append((pdf_file, future))

        results = {}
        for pdf_file, future in futures:
            try:
                results[pdf_file] = future.result()
            except Exception as e:
                results[pdf_file] = f"Error: {str(e)}"

    return results

Usage Examples

Example 1: Extract Text from Invoice

  1. Load the PDF invoice
  2. Extract all text content
  3. Parse for invoice number, date, amount
  4. Save extracted data to structured format

Example 2: Fill Application Form

  1. Load the application form PDF
  2. Detect all form fields
  3. Fill fields with provided data
  4. Save filled form as new PDF

Example 3: Extract Tables from Report

  1. Open multi-page report PDF
  2. Extract all tables from each page
  3. Convert tables to CSV or Excel
  4. Preserve table structure and formatting

Required Libraries

Install necessary Python packages:

pip install PyPDF2 pdfplumber PyMuPDF pytesseract pillow

Tips

  • Always check if PDF is password-protected first
  • Use different libraries based on your needs (speed vs accuracy)
  • For scanned documents, OCR quality depends on image resolution
  • Consider the PDF version when working with older files
  • Test with sample pages before processing entire documents
  • Handle encoding issues for non-English text