| name | A/B Test Analysis |
| description | Design and analyze A/B tests, calculate statistical significance, and determine sample sizes for conversion optimization and experiment validation |
A/B Test Analysis
A/B testing is a statistical method to compare two variants and determine which performs better, enabling data-driven optimization decisions.
Core Components
- Control Group: Original version (A)
- Treatment Group: New variant (B)
- Metric: Outcome being measured
- Sample Size: Observations needed for power
- Significance Level: Type I error threshold (α = 0.05)
- Power: 1 - Type II error (typically 0.80)
Analysis Steps
- Define success metric
- Calculate sample size
- Run experiment
- Check assumptions
- Perform statistical test
- Calculate effect size
- Interpret results
Implementation with Python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy.stats import binom_test, ttest_ind, chi2_contingency
import seaborn as sns
# Sample A/B test data
np.random.seed(42)
# Scenario: Testing new checkout flow
control_conversions = np.random.binomial(1, 0.10, 10000)
treatment_conversions = np.random.binomial(1, 0.12, 10000)
control_revenue = np.random.exponential(50, 10000)
treatment_revenue = np.random.exponential(55, 10000)
# Create dataframes
df_control = pd.DataFrame({
'group': 'Control',
'converted': control_conversions,
'revenue': control_revenue,
})
df_treatment = pd.DataFrame({
'group': 'Treatment',
'converted': treatment_conversions,
'revenue': treatment_revenue,
})
df = pd.concat([df_control, df_treatment], ignore_index=True)
print("A/B Test Data Summary:")
print(df.groupby('group')[['converted', 'revenue']].agg({
'converted': ['sum', 'count', 'mean'],
'revenue': ['sum', 'mean', 'std'],
}))
# 1. Conversion Rate Test (Chi-square)
contingency_table = pd.crosstab(df['group'], df['converted'])
print("\nContingency Table:")
print(contingency_table)
chi2, p_value, dof, expected = chi2_contingency(contingency_table)
print(f"\nChi-square Test:")
print(f"Chi2 statistic: {chi2:.4f}")
print(f"P-value: {p_value:.4f}")
print(f"Significant: {'Yes' if p_value < 0.05 else 'No'}")
# 2. Conversion Rate Calculation
control_cr = df[df['group'] == 'Control']['converted'].mean()
treatment_cr = df[df['group'] == 'Treatment']['converted'].mean()
lift = (treatment_cr - control_cr) / control_cr * 100
print(f"\nConversion Rates:")
print(f"Control: {control_cr:.4f} ({control_cr*100:.2f}%)")
print(f"Treatment: {treatment_cr:.4f} ({treatment_cr*100:.2f}%)")
print(f"Lift: {lift:.2f}%")
# 3. Revenue Per User Test (T-test)
control_revenue = df[df['group'] == 'Control']['revenue']
treatment_revenue = df[df['group'] == 'Treatment']['revenue']
t_stat, p_value_revenue = ttest_ind(control_revenue, treatment_revenue)
print(f"\nRevenue Per User T-test:")
print(f"Control Mean: ${control_revenue.mean():.2f}")
print(f"Treatment Mean: ${treatment_revenue.mean():.2f}")
print(f"T-statistic: {t_stat:.4f}")
print(f"P-value: {p_value_revenue:.4f}")
print(f"Significant: {'Yes' if p_value_revenue < 0.05 else 'No'}")
# 4. Effect Size (Cohen's d)
def cohens_d(group1, group2):
n1, n2 = len(group1), len(group2)
var1, var2 = np.var(group1, ddof=1), np.var(group2, ddof=1)
pooled_std = np.sqrt(((n1-1)*var1 + (n2-1)*var2) / (n1+n2-2))
return (np.mean(group1) - np.mean(group2)) / pooled_std
effect_size = cohens_d(control_revenue, treatment_revenue)
print(f"\nEffect Size (Cohen's d): {effect_size:.4f}")
print("Interpretation: " + {
True: "Small effect (|d| < 0.2)",
False: {
True: "Medium effect (0.2 <= |d| < 0.8)",
False: "Large effect (|d| >= 0.8)"
}[abs(effect_size) < 0.8]
}[abs(effect_size) < 0.2])
# 5. Confidence Intervals
def confidence_interval(data, confidence=0.95):
n = len(data)
mean = np.mean(data)
se = stats.sem(data)
margin = se * stats.t.ppf((1 + confidence) / 2, n - 1)
return mean - margin, mean + margin
ci_control = confidence_interval(control_revenue)
ci_treatment = confidence_interval(treatment_revenue)
print(f"\n95% Confidence Intervals:")
print(f"Control: (${ci_control[0]:.2f}, ${ci_control[1]:.2f})")
print(f"Treatment: (${ci_treatment[0]:.2f}, ${ci_treatment[1]:.2f})")
# 6. Sample Size Calculation
def calculate_sample_size(baseline_cr, target_cr, significance=0.05, power=0.80):
from scipy.stats import norm
effect_size = 2 * (np.arcsin(np.sqrt(target_cr)) - np.arcsin(np.sqrt(baseline_cr)))
z_alpha = norm.ppf(1 - significance/2)
z_beta = norm.ppf(power)
n = ((z_alpha + z_beta) / effect_size) ** 2
return int(np.ceil(n))
sample_size_needed = calculate_sample_size(control_cr, treatment_cr)
print(f"\nSample Size Analysis:")
print(f"Baseline CR: {control_cr:.4f}")
print(f"Target CR: {treatment_cr:.4f}")
print(f"Required per group: {sample_size_needed:,}")
print(f"Actual per group: {len(df[df['group'] == 'Control']):,}")
# 7. Sequential Testing / Running Analysis
fig, axes = plt.subplots(2, 2, figsize=(14, 8))
# Cumulative conversion rates
control_cumsum = df[df['group'] == 'Control']['converted'].cumsum()
treatment_cumsum = df[df['group'] == 'Treatment']['converted'].cumsum()
control_n = np.arange(1, len(control_cumsum) + 1)
treatment_n = np.arange(1, len(treatment_cumsum) + 1)
axes[0, 0].plot(control_n, control_cumsum / control_n, label='Control', alpha=0.7)
axes[0, 0].plot(treatment_n, treatment_cumsum / treatment_n, label='Treatment', alpha=0.7)
axes[0, 0].set_xlabel('Sample Size')
axes[0, 0].set_ylabel('Conversion Rate')
axes[0, 0].set_title('Conversion Rate Over Time')
axes[0, 0].legend()
axes[0, 0].grid(True, alpha=0.3)
# Distribution comparison
axes[0, 1].hist(control_revenue, bins=50, alpha=0.5, label='Control', density=True)
axes[0, 1].hist(treatment_revenue, bins=50, alpha=0.5, label='Treatment', density=True)
axes[0, 1].set_xlabel('Revenue')
axes[0, 1].set_ylabel('Density')
axes[0, 1].set_title('Revenue Distribution')
axes[0, 1].legend()
# Box plot comparison
data_box = [control_revenue, treatment_revenue]
axes[1, 0].boxplot(data_box, labels=['Control', 'Treatment'])
axes[1, 0].set_ylabel('Revenue')
axes[1, 0].set_title('Revenue Distribution (Box Plot)')
axes[1, 0].grid(True, alpha=0.3, axis='y')
# Conversion comparison
conversion_data = pd.DataFrame({
'Group': ['Control', 'Treatment'],
'Converted': [control_conversions.sum(), treatment_conversions.sum()],
'Not Converted': [len(control_conversions) - control_conversions.sum(),
len(treatment_conversions) - treatment_conversions.sum()],
})
conversion_data.set_index('Group')[['Converted', 'Not Converted']].plot(
kind='bar', ax=axes[1, 1], color=['green', 'red'], edgecolor='black'
)
axes[1, 1].set_title('Conversion Comparison')
axes[1, 1].set_ylabel('Count')
axes[1, 1].legend(title='Status')
plt.tight_layout()
plt.show()
# 8. Bayesian Perspective
print("\n8. Bayesian Analysis (informative):")
from scipy.stats import beta
# Assume prior Beta(1, 1) - uninformative
control_successes = control_conversions.sum()
control_failures = len(control_conversions) - control_successes
treatment_successes = treatment_conversions.sum()
treatment_failures = len(treatment_conversions) - treatment_successes
# Posterior distributions
posterior_control = beta(1 + control_successes, 1 + control_failures)
posterior_treatment = beta(1 + treatment_successes, 1 + treatment_failures)
samples_control = posterior_control.rvs(10000)
samples_treatment = posterior_treatment.rvs(10000)
prob_treatment_better = (samples_treatment > samples_control).mean()
print(f"Probability Treatment > Control: {prob_treatment_better:.4f}")
# Visualization
fig, ax = plt.subplots(figsize=(10, 5))
ax.hist(samples_control, bins=50, alpha=0.5, label='Control', density=True)
ax.hist(samples_treatment, bins=50, alpha=0.5, label='Treatment', density=True)
ax.set_xlabel('Conversion Rate')
ax.set_ylabel('Density')
ax.set_title('Bayesian Posterior Distributions')
ax.legend()
ax.grid(True, alpha=0.3)
plt.show()
# 9. Summary Report
print("\n" + "="*50)
print("A/B TEST SUMMARY REPORT")
print("="*50)
print(f"Metric: Conversion Rate")
print(f"Control CR: {control_cr*100:.2f}%")
print(f"Treatment CR: {treatment_cr*100:.2f}%")
print(f"Lift: {lift:.2f}%")
print(f"P-value: {p_value:.4f}")
print(f"Result: {'REJECT H0 - Significant Difference' if p_value < 0.05 else 'FAIL TO REJECT H0 - No Significant Difference'}")
print(f"Winner: {f'Treatment (+{lift:.2f}%)' if p_value < 0.05 and lift > 0 else 'Control (No clear winner)'}")
print("="*50)
Sample Size Determination
- Baseline conversion rate: Current performance
- Target effect size: Minimum detectable difference
- Significance level (α): Usually 0.05
- Power (1-β): Usually 0.80 or 0.90
Key Metrics
- Conversion Rate: Proportion of successes
- Revenue Per User: Average transaction value
- Click-through Rate: Ad performance
- Engagement: Feature adoption
Deliverables
- Test design document
- Sample size calculations
- Statistical test results
- Effect size measurements
- Confidence intervals
- Visualization of results
- Executive summary with recommendation