Claude Code Plugins

Community-maintained marketplace

Feedback
4
0

Implement API rate limiting strategies using token bucket, sliding window, and fixed window algorithms. Use when protecting APIs from abuse, managing traffic, or implementing tiered rate limits.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name api-rate-limiting
description Implement API rate limiting strategies using token bucket, sliding window, and fixed window algorithms. Use when protecting APIs from abuse, managing traffic, or implementing tiered rate limits.

API Rate Limiting

Overview

Protect APIs from abuse and manage traffic using various rate limiting algorithms with per-user, per-IP, and per-endpoint strategies.

When to Use

  • Protecting APIs from brute force attacks
  • Managing traffic spikes
  • Implementing tiered service plans
  • Preventing DoS attacks
  • Fairness in resource allocation
  • Enforcing quotas and usage limits

Instructions

1. Token Bucket Algorithm

// Token Bucket Rate Limiter
class TokenBucket {
  constructor(capacity, refillRate) {
    this.capacity = capacity;
    this.tokens = capacity;
    this.refillRate = refillRate; // tokens per second
    this.lastRefillTime = Date.now();
  }

  refill() {
    const now = Date.now();
    const timePassed = (now - this.lastRefillTime) / 1000;
    const tokensToAdd = timePassed * this.refillRate;

    this.tokens = Math.min(this.capacity, this.tokens + tokensToAdd);
    this.lastRefillTime = now;
  }

  consume(tokens = 1) {
    this.refill();

    if (this.tokens >= tokens) {
      this.tokens -= tokens;
      return true;
    }
    return false;
  }

  available() {
    this.refill();
    return Math.floor(this.tokens);
  }
}

// Express middleware
const express = require('express');
const app = express();

const rateLimiters = new Map();

const tokenBucketRateLimit = (capacity, refillRate) => {
  return (req, res, next) => {
    const key = req.user?.id || req.ip;

    if (!rateLimiters.has(key)) {
      rateLimiters.set(key, new TokenBucket(capacity, refillRate));
    }

    const limiter = rateLimiters.get(key);

    if (limiter.consume(1)) {
      res.setHeader('X-RateLimit-Limit', capacity);
      res.setHeader('X-RateLimit-Remaining', limiter.available());
      next();
    } else {
      res.status(429).json({
        error: 'Rate limit exceeded',
        retryAfter: Math.ceil(1 / limiter.refillRate)
      });
    }
  };
};

app.get('/api/data', tokenBucketRateLimit(100, 10), (req, res) => {
  res.json({ data: 'api response' });
});

2. Sliding Window Algorithm

class SlidingWindowLimiter {
  constructor(maxRequests, windowSizeSeconds) {
    this.maxRequests = maxRequests;
    this.windowSize = windowSizeSeconds * 1000; // Convert to ms
    this.requests = [];
  }

  isAllowed() {
    const now = Date.now();
    const windowStart = now - this.windowSize;

    // Remove old requests outside window
    this.requests = this.requests.filter(time => time > windowStart);

    if (this.requests.length < this.maxRequests) {
      this.requests.push(now);
      return true;
    }
    return false;
  }

  remaining() {
    const now = Date.now();
    const windowStart = now - this.windowSize;
    this.requests = this.requests.filter(time => time > windowStart);
    return Math.max(0, this.maxRequests - this.requests.length);
  }
}

const slidingWindowRateLimit = (maxRequests, windowSeconds) => {
  const limiters = new Map();

  return (req, res, next) => {
    const key = req.user?.id || req.ip;

    if (!limiters.has(key)) {
      limiters.set(key, new SlidingWindowLimiter(maxRequests, windowSeconds));
    }

    const limiter = limiters.get(key);

    if (limiter.isAllowed()) {
      res.setHeader('X-RateLimit-Limit', maxRequests);
      res.setHeader('X-RateLimit-Remaining', limiter.remaining());
      next();
    } else {
      res.status(429).json({ error: 'Rate limit exceeded' });
    }
  };
};

app.get('/api/search', slidingWindowRateLimit(30, 60), (req, res) => {
  res.json({ results: [] });
});

3. Redis-Based Rate Limiting

const redis = require('redis');
const client = redis.createClient();

// Sliding window with Redis
const redisRateLimit = (maxRequests, windowSeconds) => {
  return async (req, res, next) => {
    const key = `ratelimit:${req.user?.id || req.ip}`;
    const now = Date.now();
    const windowStart = now - (windowSeconds * 1000);

    try {
      // Remove old requests
      await client.zremrangebyscore(key, 0, windowStart);

      // Count requests in window
      const count = await client.zcard(key);

      if (count < maxRequests) {
        // Add current request
        await client.zadd(key, now, `${now}-${Math.random()}`);
        // Set expiration
        await client.expire(key, windowSeconds);

        res.setHeader('X-RateLimit-Limit', maxRequests);
        res.setHeader('X-RateLimit-Remaining', maxRequests - count - 1);
        next();
      } else {
        const oldestRequest = await client.zrange(key, 0, 0);
        const resetTime = parseInt(oldestRequest[0]) + (windowSeconds * 1000);
        const retryAfter = Math.ceil((resetTime - now) / 1000);

        res.set('Retry-After', retryAfter);
        res.status(429).json({
          error: 'Rate limit exceeded',
          retryAfter
        });
      }
    } catch (error) {
      console.error('Rate limit error:', error);
      next(); // Allow request if Redis fails
    }
  };
};

app.get('/api/expensive', redisRateLimit(10, 60), (req, res) => {
  res.json({ result: 'expensive operation' });
});

4. Tiered Rate Limiting

const RATE_LIMITS = {
  free: { requests: 100, window: 3600 },      // 100 per hour
  pro: { requests: 10000, window: 3600 },     // 10,000 per hour
  enterprise: { requests: null, window: null } // Unlimited
};

const tieredRateLimit = async (req, res, next) => {
  const user = req.user;
  const plan = user?.plan || 'free';
  const limits = RATE_LIMITS[plan];

  if (!limits.requests) {
    return next(); // Unlimited plan
  }

  const key = `ratelimit:${user.id}`;
  const now = Date.now();
  const windowStart = now - (limits.window * 1000);

  try {
    await client.zremrangebyscore(key, 0, windowStart);
    const count = await client.zcard(key);

    if (count < limits.requests) {
      await client.zadd(key, now, `${now}-${Math.random()}`);
      await client.expire(key, limits.window);

      res.setHeader('X-RateLimit-Limit', limits.requests);
      res.setHeader('X-RateLimit-Remaining', limits.requests - count - 1);
      res.setHeader('X-Plan', plan);
      next();
    } else {
      res.status(429).json({
        error: 'Rate limit exceeded',
        plan,
        upgradeUrl: '/plans'
      });
    }
  } catch (error) {
    next();
  }
};

app.use(tieredRateLimit);

5. Python Rate Limiting (Flask)

from flask import Flask, request, jsonify
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address
from datetime import datetime, timedelta
import redis

app = Flask(__name__)
limiter = Limiter(
    app=app,
    key_func=get_remote_address,
    default_limits=["200 per day", "50 per hour"]
)

# Custom rate limit based on user plan
redis_client = redis.Redis(host='localhost', port=6379)

def get_rate_limit(user_id):
    plan = redis_client.get(f'user:{user_id}:plan').decode()
    limits = {
        'free': (100, 3600),
        'pro': (10000, 3600),
        'enterprise': (None, None)
    }
    return limits.get(plan, (100, 3600))

@app.route('/api/data', methods=['GET'])
@limiter.limit("30 per minute")
def get_data():
    return jsonify({'data': 'api response'}), 200

@app.route('/api/premium', methods=['GET'])
def get_premium_data():
    user_id = request.user_id
    max_requests, window = get_rate_limit(user_id)

    if max_requests is None:
        return jsonify({'data': 'unlimited data'}), 200

    key = f'ratelimit:{user_id}'
    current = redis_client.incr(key)
    redis_client.expire(key, window)

    if current <= max_requests:
        return jsonify({'data': 'premium data'}), 200
    else:
        return jsonify({'error': 'Rate limit exceeded'}), 429

6. Response Headers

// Standard rate limit headers
res.setHeader('X-RateLimit-Limit', maxRequests);          // Total requests allowed
res.setHeader('X-RateLimit-Remaining', remaining);        // Remaining requests
res.setHeader('X-RateLimit-Reset', resetTime);            // Unix timestamp of reset
res.setHeader('Retry-After', secondsToWait);              // How long to wait

// 429 Too Many Requests response
{
  "error": "Rate limit exceeded",
  "code": "RATE_LIMIT_EXCEEDED",
  "retryAfter": 60,
  "resetAt": "2025-01-15T15:00:00Z"
}

Best Practices

✅ DO

  • Include rate limit headers in responses
  • Use Redis for distributed rate limiting
  • Implement tiered limits for different user plans
  • Set appropriate window sizes and limits
  • Monitor rate limit metrics
  • Provide clear retry guidance
  • Document rate limits in API docs
  • Test under high load

❌ DON'T

  • Use in-memory storage in production
  • Set limits too restrictively
  • Forget to include Retry-After header
  • Ignore distributed scenarios
  • Make rate limits public (security)
  • Use simple counters for distributed systems
  • Forget cleanup of old data

Monitoring

// Track rate limit metrics
const metrics = {
  totalRequests: 0,
  limitedRequests: 0,
  byUser: new Map()
};

app.use((req, res, next) => {
  metrics.totalRequests++;
  res.on('finish', () => {
    if (res.statusCode === 429) {
      metrics.limitedRequests++;
    }
  });
  next();
});

app.get('/metrics/rate-limit', (req, res) => {
  res.json({
    totalRequests: metrics.totalRequests,
    limitedRequests: metrics.limitedRequests,
    percentage: (metrics.limitedRequests / metrics.totalRequests * 100).toFixed(2)
  });
});