Claude Code Plugins

Community-maintained marketplace

Feedback

autoscaling-configuration

@aj-geddes/useful-ai-prompts
4
0

Configure autoscaling for Kubernetes, VMs, and serverless workloads based on metrics, schedules, and custom indicators.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name autoscaling-configuration
description Configure autoscaling for Kubernetes, VMs, and serverless workloads based on metrics, schedules, and custom indicators.

Autoscaling Configuration

Overview

Implement autoscaling strategies to automatically adjust resource capacity based on demand, ensuring cost efficiency while maintaining performance and availability.

When to Use

  • Traffic-driven workload scaling
  • Time-based scheduled scaling
  • Resource utilization optimization
  • Cost reduction
  • High-traffic event handling
  • Batch processing optimization
  • Database connection pooling

Implementation Examples

1. Kubernetes Horizontal Pod Autoscaler

# hpa-configuration.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: myapp-hpa
  namespace: production
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: myapp
  minReplicas: 2
  maxReplicas: 20
  metrics:
    - type: Resource
      resource:
        name: cpu
        target:
          type: Utilization
          averageUtilization: 70
    - type: Resource
      resource:
        name: memory
        target:
          type: Utilization
          averageUtilization: 80
    - type: Pods
      pods:
        metric:
          name: http_requests_per_second
        target:
          type: AverageValue
          averageValue: "1000"
  behavior:
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
        - type: Percent
          value: 50
          periodSeconds: 15
        - type: Pods
          value: 2
          periodSeconds: 60
      selectPolicy: Min
    scaleUp:
      stabilizationWindowSeconds: 0
      policies:
        - type: Percent
          value: 100
          periodSeconds: 15
        - type: Pods
          value: 4
          periodSeconds: 15
      selectPolicy: Max

---
# Vertical Pod Autoscaler for resource optimization
apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
  name: myapp-vpa
  namespace: production
spec:
  targetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: myapp
  updatePolicy:
    updateMode: "Auto"
  resourcePolicy:
    containerPolicies:
      - containerName: myapp
        minAllowed:
          cpu: 50m
          memory: 64Mi
        maxAllowed:
          cpu: 1000m
          memory: 512Mi
        controlledResources:
          - cpu
          - memory

2. AWS Auto Scaling

# aws-autoscaling.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: autoscaling-config
  namespace: production
data:
  setup-asg.sh: |
    #!/bin/bash
    set -euo pipefail

    ASG_NAME="myapp-asg"
    MIN_SIZE=2
    MAX_SIZE=10
    DESIRED_CAPACITY=3
    TARGET_CPU=70
    TARGET_MEMORY=80

    echo "Creating Auto Scaling Group..."

    # Create launch template
    aws ec2 create-launch-template \
      --launch-template-name myapp-template \
      --version-description "Production version" \
      --launch-template-data '{
        "ImageId": "ami-0c55b159cbfafe1f0",
        "InstanceType": "t3.medium",
        "KeyName": "myapp-key",
        "SecurityGroupIds": ["sg-0123456789abcdef0"],
        "UserData": "#!/bin/bash\ncd /app && docker-compose up -d",
        "TagSpecifications": [{
          "ResourceType": "instance",
          "Tags": [{"Key": "Name", "Value": "myapp-instance"}]
        }]
      }' || true

    # Create Auto Scaling Group
    aws autoscaling create-auto-scaling-group \
      --auto-scaling-group-name "$ASG_NAME" \
      --launch-template LaunchTemplateName=myapp-template \
      --min-size $MIN_SIZE \
      --max-size $MAX_SIZE \
      --desired-capacity $DESIRED_CAPACITY \
      --availability-zones us-east-1a us-east-1b us-east-1c \
      --target-group-arns arn:aws:elasticloadbalancing:us-east-1:123456789012:targetgroup/myapp/abcdef123456 \
      --health-check-type ELB \
      --health-check-grace-period 300 \
      --tags "Key=Name,Value=myapp,PropagateAtLaunch=true"

    # Create CPU scaling policy
    aws autoscaling put-scaling-policy \
      --auto-scaling-group-name "$ASG_NAME" \
      --policy-name myapp-cpu-scaling \
      --policy-type TargetTrackingScaling \
      --target-tracking-configuration '{
        "TargetValue": '$TARGET_CPU',
        "PredefinedMetricSpecification": {
          "PredefinedMetricType": "ASGAverageCPUUtilization"
        },
        "ScaleOutCooldown": 60,
        "ScaleInCooldown": 300
      }'

    echo "Auto Scaling Group created: $ASG_NAME"

---
apiVersion: batch/v1
kind: CronJob
metadata:
  name: scheduled-autoscaling
  namespace: production
spec:
  # Scale up at 8 AM
  - schedule: "0 8 * * 1-5"
    jobTemplate:
      spec:
        template:
          spec:
            containers:
              - name: autoscale
                image: amazon/aws-cli:latest
                command:
                  - sh
                  - -c
                  - |
                    aws autoscaling set-desired-capacity \
                      --auto-scaling-group-name myapp-asg \
                      --desired-capacity 10
            restartPolicy: OnFailure

  # Scale down at 6 PM
  - schedule: "0 18 * * 1-5"
    jobTemplate:
      spec:
        template:
          spec:
            containers:
              - name: autoscale
                image: amazon/aws-cli:latest
                command:
                  - sh
                  - -c
                  - |
                    aws autoscaling set-desired-capacity \
                      --auto-scaling-group-name myapp-asg \
                      --desired-capacity 3
            restartPolicy: OnFailure

3. Custom Metrics Autoscaling

# custom-metrics-hpa.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: custom-metrics-hpa
  namespace: production
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: myapp
  minReplicas: 1
  maxReplicas: 50
  metrics:
    # Queue depth from custom metrics
    - type: Pods
      pods:
        metric:
          name: job_queue_depth
        target:
          type: AverageValue
          averageValue: "100"

    # Request rate from custom metrics
    - type: Pods
      pods:
        metric:
          name: http_requests_per_second
        target:
          type: AverageValue
          averageValue: "1000"

    # Custom business metric
    - type: Pods
      pods:
        metric:
          name: active_connections
        target:
          type: AverageValue
          averageValue: "500"

---
# Prometheus ServiceMonitor for custom metrics
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: myapp-metrics
  namespace: production
spec:
  selector:
    matchLabels:
      app: myapp
  endpoints:
    - port: metrics
      interval: 30s
      path: /metrics

4. Autoscaling Script

#!/bin/bash
# autoscaling-setup.sh - Complete autoscaling configuration

set -euo pipefail

ENVIRONMENT="${1:-production}"
DEPLOYMENT="${2:-myapp}"

echo "Setting up autoscaling for $DEPLOYMENT in $ENVIRONMENT"

# Create HPA
cat <<EOF | kubectl apply -f -
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: ${DEPLOYMENT}-hpa
  namespace: ${ENVIRONMENT}
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: ${DEPLOYMENT}
  minReplicas: 2
  maxReplicas: 20
  metrics:
    - type: Resource
      resource:
        name: cpu
        target:
          type: Utilization
          averageUtilization: 70
    - type: Resource
      resource:
        name: memory
        target:
          type: Utilization
          averageUtilization: 80
  behavior:
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
        - type: Percent
          value: 50
          periodSeconds: 15
    scaleUp:
      stabilizationWindowSeconds: 0
      policies:
        - type: Percent
          value: 100
          periodSeconds: 15
EOF

echo "HPA created successfully"

# Monitor autoscaling
echo "Monitoring autoscaling events..."
kubectl get hpa ${DEPLOYMENT}-hpa -n $ENVIRONMENT -w

5. Monitoring Autoscaling

# autoscaling-monitoring.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: autoscaling-alerts
  namespace: monitoring
data:
  alerts.yaml: |
    groups:
      - name: autoscaling
        rules:
          - alert: HpaMaxedOut
            expr: |
              kube_hpa_status_current_replicas == kube_hpa_status_desired_replicas
              and
              kube_hpa_status_desired_replicas == kube_hpa_spec_max_replicas
            for: 10m
            labels:
              severity: warning
            annotations:
              summary: "HPA {{ $labels.hpa }} is at maximum replicas"

          - alert: HpaMinedOut
            expr: |
              kube_hpa_status_current_replicas == kube_hpa_status_desired_replicas
              and
              kube_hpa_status_desired_replicas == kube_hpa_spec_min_replicas
            for: 30m
            labels:
              severity: info
            annotations:
              summary: "HPA {{ $labels.hpa }} is at minimum replicas"

          - alert: AsgCapacityLow
            expr: |
              aws_autoscaling_group_desired_capacity / aws_autoscaling_group_max_size < 0.2
            for: 10m
            labels:
              severity: warning
            annotations:
              summary: "ASG {{ $labels.auto_scaling_group_name }} has low capacity"

Best Practices

✅ DO

  • Set appropriate min/max replicas
  • Monitor metric aggregation window
  • Implement cooldown periods
  • Use multiple metrics
  • Test scaling behavior
  • Monitor scaling events
  • Plan for peak loads
  • Implement fallback strategies

❌ DON'T

  • Set min replicas to 1
  • Scale too aggressively
  • Ignore cooldown periods
  • Use single metric only
  • Forget to test scaling
  • Scale below resource needs
  • Neglect monitoring
  • Deploy without capacity tests

Scaling Metrics

  • CPU Utilization: Most common metric
  • Memory Utilization: Heap-bound applications
  • Request Rate: API-driven scaling
  • Queue Depth: Async job processing
  • Custom Metrics: Business-specific indicators

Resources