Claude Code Plugins

Community-maintained marketplace

Feedback

Data Cleaning Pipeline

@aj-geddes/useful-ai-prompts
4
0

Build robust processes for data cleaning, missing value imputation, outlier handling, and data transformation for data preprocessing, data quality, and data pipeline automation

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Data Cleaning Pipeline
description Build robust processes for data cleaning, missing value imputation, outlier handling, and data transformation for data preprocessing, data quality, and data pipeline automation

Data Cleaning Pipeline

Data cleaning is the foundation of any successful data project. A robust data cleaning pipeline transforms raw, messy data into a clean, standardized format suitable for analysis and modeling.

Core Components

  • Missing Value Handling: Imputation and removal strategies
  • Outlier Detection & Treatment: Identifying and handling anomalies
  • Data Type Standardization: Ensuring correct data types
  • Duplicate Removal: Identifying and removing duplicates
  • Normalization & Scaling: Standardizing value ranges
  • Text Cleaning: Handling text data

Cleaning Strategies

  • Deletion: Removing rows or columns
  • Imputation: Filling with mean, median, or predictive models
  • Transformation: Converting between formats
  • Validation: Ensuring data integrity rules

Implementation with Python

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.impute import SimpleImputer, KNNImputer

# Load raw data
df = pd.read_csv('raw_data.csv')

# Step 1: Identify and handle missing values
print("Missing values:\n", df.isnull().sum())

# Strategy 1: Delete rows with critical missing values
df = df.dropna(subset=['customer_id', 'transaction_date'])

# Strategy 2: Impute numerical columns with median
imputer = SimpleImputer(strategy='median')
df['age'] = imputer.fit_transform(df[['age']])

# Strategy 3: Use KNN imputation for related features
knn_imputer = KNNImputer(n_neighbors=5)
numeric_cols = df.select_dtypes(include=[np.number]).columns
df[numeric_cols] = knn_imputer.fit_transform(df[numeric_cols])

# Strategy 4: Fill categorical with mode
df['category'] = df['category'].fillna(df['category'].mode()[0])

# Step 2: Handle duplicates
print(f"Duplicate rows: {df.duplicated().sum()}")
df = df.drop_duplicates()

# Duplicate on specific columns
df = df.drop_duplicates(subset=['customer_id', 'transaction_date'])

# Step 3: Outlier detection and handling
Q1 = df['amount'].quantile(0.25)
Q3 = df['amount'].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Remove outliers
df = df[(df['amount'] >= lower_bound) & (df['amount'] <= upper_bound)]

# Alternative: Cap outliers
df['amount'] = df['amount'].clip(lower=lower_bound, upper=upper_bound)

# Step 4: Data type standardization
df['transaction_date'] = pd.to_datetime(df['transaction_date'])
df['customer_id'] = df['customer_id'].astype('int64')
df['amount'] = pd.to_numeric(df['amount'], errors='coerce')

# Step 5: Text cleaning
df['name'] = df['name'].str.strip().str.lower()
df['name'] = df['name'].str.replace('[^a-z0-9\s]', '', regex=True)

# Step 6: Normalization and scaling
scaler = StandardScaler()
df[['age', 'income']] = scaler.fit_transform(df[['age', 'income']])

# MinMax scaling for bounded range [0, 1]
minmax_scaler = MinMaxScaler()
df[['score']] = minmax_scaler.fit_transform(df[['score']])

# Step 7: Create data quality report
def create_quality_report(df_original, df_cleaned):
    report = {
        'Original rows': len(df_original),
        'Cleaned rows': len(df_cleaned),
        'Rows removed': len(df_original) - len(df_cleaned),
        'Removal percentage': ((len(df_original) - len(df_cleaned)) / len(df_original) * 100),
        'Original missing': df_original.isnull().sum().sum(),
        'Cleaned missing': df_cleaned.isnull().sum().sum(),
    }
    return pd.DataFrame(report, index=[0])

quality = create_quality_report(df, df)
print(quality)

# Step 8: Validation checks
assert df['age'].isnull().sum() == 0, "Age has missing values"
assert df['transaction_date'].dtype == 'datetime64[ns]', "Date not datetime"
assert (df['amount'] >= 0).all(), "Negative amounts detected"

print("Data cleaning pipeline completed successfully!")

Pipeline Architecture

class DataCleaningPipeline:
    def __init__(self):
        self.cleaner_steps = []

    def add_step(self, func, description):
        self.cleaner_steps.append((func, description))
        return self

    def execute(self, df):
        for func, desc in self.cleaner_steps:
            print(f"Executing: {desc}")
            df = func(df)
        return df

# Usage
pipeline = DataCleaningPipeline()
pipeline.add_step(
    lambda df: df.dropna(subset=['customer_id']),
    "Remove rows with missing customer_id"
).add_step(
    lambda df: df.drop_duplicates(),
    "Remove duplicate rows"
).add_step(
    lambda df: df[(df['amount'] > 0) & (df['amount'] < 100000)],
    "Filter invalid amount ranges"
)

df_clean = pipeline.execute(df)

Advanced Cleaning Techniques

# Step 9: Feature-specific cleaning
df['phone'] = df['phone'].str.replace(r'\D', '', regex=True)  # Remove non-digits

# Step 10: Datetime handling
df['created_date'] = pd.to_datetime(df['created_date'], errors='coerce')
df['days_since_creation'] = (pd.Timestamp.now() - df['created_date']).dt.days

# Step 11: Categorical standardization
df['status'] = df['status'].str.lower().str.strip()
df['status'] = df['status'].replace({
    'active': 'active',
    'inactive': 'inactive',
    'pending': 'pending',
})

# Step 12: Numeric constraint checking
df['age'] = df['age'].where((df['age'] >= 0) & (df['age'] <= 150), np.nan)
df['percentage'] = df['percentage'].where((df['percentage'] >= 0) & (df['percentage'] <= 100), np.nan)

# Step 13: Create data quality score
quality_score = {
    'Missing %': (df.isnull().sum() / len(df) * 100).mean(),
    'Duplicates %': (df.duplicated().sum() / len(df) * 100),
    'Complete Features': (df.notna().sum() / len(df)).mean() * 100,
}

# Step 14: Generate cleaning report
cleaning_report = f"""
DATA CLEANING REPORT
====================
Rows removed: {len(df) - len(df_clean)}
Columns: {len(df_clean.columns)}
Remaining rows: {len(df_clean)}
Completeness: {(df_clean.notna().sum().sum() / (len(df_clean) * len(df_clean.columns)) * 100):.1f}%
"""
print(cleaning_report)

Key Decisions

  • How to handle missing values (delete vs impute)?
  • Which outliers are legitimate business cases?
  • What are acceptable value ranges?
  • Which duplicates are true duplicates?
  • How to standardize categorical values?

Validation Steps

  • Check for data type consistency
  • Verify value ranges are reasonable
  • Confirm no unintended data loss
  • Document all transformations applied
  • Create audit trail of changes

Deliverables

  • Cleaned dataset with quality metrics
  • Data cleaning log documenting all steps
  • Validation report confirming data integrity
  • Before/after comparison statistics
  • Cleaning code and pipeline documentation