Claude Code Plugins

Community-maintained marketplace

Feedback

distributed-tracing

@aj-geddes/useful-ai-prompts
4
0

Implement distributed tracing with Jaeger and Zipkin for tracking requests across microservices. Use when debugging distributed systems, tracking request flows, or analyzing service performance.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name distributed-tracing
description Implement distributed tracing with Jaeger and Zipkin for tracking requests across microservices. Use when debugging distributed systems, tracking request flows, or analyzing service performance.

Distributed Tracing

Overview

Set up distributed tracing infrastructure with Jaeger or Zipkin to track requests across microservices and identify performance bottlenecks.

When to Use

  • Debugging microservice interactions
  • Identifying performance bottlenecks
  • Tracking request flows
  • Analyzing service dependencies
  • Root cause analysis

Instructions

1. Jaeger Setup

# docker-compose.yml
version: '3.8'
services:
  jaeger:
    image: jaegertracing/all-in-one:latest
    ports:
      - "5775:5775/udp"
      - "6831:6831/udp"
      - "16686:16686"
      - "14268:14268"
    networks:
      - tracing

networks:
  tracing:

2. Node.js Jaeger Instrumentation

// tracing.js
const initTracer = require('jaeger-client').initTracer;
const opentracing = require('opentracing');

const initJaegerTracer = (serviceName) => {
  const config = {
    serviceName: serviceName,
    sampler: {
      type: 'const',
      param: 1
    },
    reporter: {
      logSpans: true,
      agentHost: process.env.JAEGER_AGENT_HOST || 'localhost',
      agentPort: process.env.JAEGER_AGENT_PORT || 6831
    }
  };

  return initTracer(config, {});
};

const tracer = initJaegerTracer('api-service');
module.exports = { tracer };

3. Express Tracing Middleware

// middleware.js
const { tracer } = require('./tracing');
const opentracing = require('opentracing');

const tracingMiddleware = (req, res, next) => {
  const wireCtx = tracer.extract(
    opentracing.FORMAT_HTTP_HEADERS,
    req.headers
  );

  const span = tracer.startSpan(req.path, {
    childOf: wireCtx,
    tags: {
      [opentracing.Tags.SPAN_KIND]: opentracing.Tags.SPAN_KIND_RPC_SERVER,
      [opentracing.Tags.HTTP_METHOD]: req.method,
      [opentracing.Tags.HTTP_URL]: req.url
    }
  });

  req.span = span;

  res.on('finish', () => {
    span.setTag(opentracing.Tags.HTTP_STATUS_CODE, res.statusCode);
    span.finish();
  });

  next();
};

module.exports = tracingMiddleware;

4. Python Jaeger Integration

# tracing.py
from jaeger_client import Config
from opentracing.propagation import Format

def init_jaeger_tracer(service_name):
    config = Config(
        config={
            'sampler': {'type': 'const', 'param': 1},
            'local_agent': {
                'reporting_host': 'localhost',
                'reporting_port': 6831,
            },
            'logging': True,
        },
        service_name=service_name,
    )
    return config.initialize_tracer()

# Flask integration
from flask import Flask, request

app = Flask(__name__)
tracer = init_jaeger_tracer('api-service')

@app.before_request
def before_request():
    ctx = tracer.extract(Format.HTTP_HEADERS, request.headers)
    request.span = tracer.start_span(
        request.path,
        child_of=ctx,
        tags={
            'http.method': request.method,
            'http.url': request.url,
        }
    )

@app.after_request
def after_request(response):
    request.span.set_tag('http.status_code', response.status_code)
    request.span.finish()
    return response

@app.route('/api/users/<user_id>')
def get_user(user_id):
    with tracer.start_span('fetch-user', child_of=request.span) as span:
        span.set_tag('user.id', user_id)
        # Fetch user from database
        return {'user': {'id': user_id}}

5. Distributed Context Propagation

// propagation.js
const axios = require('axios');
const { tracer } = require('./tracing');
const opentracing = require('opentracing');

async function callDownstreamService(span, url, data) {
  const headers = {};

  // Inject trace context
  tracer.inject(span, opentracing.FORMAT_HTTP_HEADERS, headers);

  try {
    const response = await axios.post(url, data, { headers });
    span.setTag('downstream.success', true);
    return response.data;
  } catch (error) {
    span.setTag(opentracing.Tags.ERROR, true);
    span.log({
      event: 'error',
      message: error.message
    });
    throw error;
  }
}

module.exports = { callDownstreamService };

6. Zipkin Integration

// zipkin-setup.js
const CLSContext = require('zipkin-context-cls');
const { Tracer, BatchRecorder, HttpLogger } = require('zipkin');
const zipkinMiddleware = require('zipkin-instrumentation-express').expressMiddleware;

const recorder = new BatchRecorder({
  logger: new HttpLogger({
    endpoint: 'http://localhost:9411/api/v2/spans',
    headers: { 'Content-Type': 'application/json' }
  })
});

const ctxImpl = new CLSContext('zipkin');
const tracer = new Tracer({ recorder, ctxImpl });

module.exports = {
  tracer,
  zipkinMiddleware: zipkinMiddleware({
    tracer,
    serviceName: 'api-service'
  })
};

7. Trace Analysis

# query-traces.py
import requests

def query_traces(service_name, operation=None, limit=20):
    params = {
        'service': service_name,
        'limit': limit
    }
    if operation:
        params['operation'] = operation

    response = requests.get('http://localhost:16686/api/traces', params=params)
    return response.json()['data']

def find_slow_traces(service_name, min_duration_ms=1000):
    traces = query_traces(service_name, limit=100)
    slow_traces = [
        t for t in traces
        if t['duration'] > min_duration_ms * 1000
    ]
    return sorted(slow_traces, key=lambda t: t['duration'], reverse=True)

Best Practices

✅ DO

  • Sample appropriately for your traffic volume
  • Propagate trace context across services
  • Add meaningful span tags
  • Log errors with spans
  • Use consistent service naming
  • Monitor trace latency
  • Document trace format
  • Keep instrumentation lightweight

❌ DON'T

  • Sample 100% in production
  • Skip trace context propagation
  • Log sensitive data in spans
  • Create excessive spans
  • Ignore sampling configuration
  • Use unbounded cardinality tags
  • Deploy without testing collection

Key Concepts

  • Trace: Complete request flow across services
  • Span: Single operation within a trace
  • Tag: Metadata attached to spans
  • Log: Timestamped events within spans
  • Context: Trace information propagated between services