Claude Code Plugins

Community-maintained marketplace

Feedback

infrastructure-cost-optimization

@aj-geddes/useful-ai-prompts
4
0

Optimize cloud infrastructure costs through resource rightsizing, reserved instances, spot instances, and waste reduction strategies.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name infrastructure-cost-optimization
description Optimize cloud infrastructure costs through resource rightsizing, reserved instances, spot instances, and waste reduction strategies.

Infrastructure Cost Optimization

Overview

Reduce infrastructure costs through intelligent resource allocation, reserved instances, spot instances, and continuous optimization without sacrificing performance.

When to Use

  • Cloud cost reduction
  • Budget management and tracking
  • Resource utilization optimization
  • Multi-environment cost allocation
  • Waste identification and elimination
  • Reserved instance planning
  • Spot instance integration

Implementation Examples

1. AWS Cost Optimization Configuration

# cost-optimization-setup.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: cost-optimization-scripts
  namespace: operations
data:
  analyze-costs.sh: |
    #!/bin/bash
    set -euo pipefail

    echo "=== AWS Cost Analysis ==="

    # Get daily cost trend
    echo "Daily costs for last 7 days:"
    aws ce get-cost-and-usage \
      --time-period Start=$(date -d '7 days ago' +%Y-%m-%d),End=$(date +%Y-%m-%d) \
      --granularity DAILY \
      --metrics "BlendedCost" \
      --group-by Type=DIMENSION,Key=SERVICE \
      --query 'ResultsByTime[*].[TimePeriod.Start,Total.BlendedCost.Amount]' \
      --output table

    # Find unattached resources
    echo -e "\n=== Unattached EBS Volumes ==="
    aws ec2 describe-volumes \
      --filters Name=status,Values=available \
      --query 'Volumes[*].[VolumeId,Size,CreateTime]' \
      --output table

    echo -e "\n=== Unattached Elastic IPs ==="
    aws ec2 describe-addresses \
      --filters Name=association-id,Values=none \
      --query 'Addresses[*].[PublicIp,AllocationId]' \
      --output table

    echo -e "\n=== Unused RDS Instances ==="
    aws rds describe-db-instances \
      --query 'DBInstances[?DBInstanceStatus==`available`].[DBInstanceIdentifier,DBInstanceClass,Engine,AllocatedStorage]' \
      --output table

    # Estimate savings with Reserved Instances
    echo -e "\n=== Reserved Instance Savings Potential ==="
    aws ce get-reservation-purchase-recommendation \
      --service "EC2" \
      --lookback-period THIRTY_DAYS \
      --query 'Recommendations[0].[RecommendationSummary.TotalEstimatedMonthlySavingsAmount,RecommendationSummary.TotalEstimatedMonthlySavingsPercentage]' \
      --output table

  optimize-resources.sh: |
    #!/bin/bash
    set -euo pipefail

    echo "Starting resource optimization..."

    # Remove unattached volumes
    echo "Removing unattached volumes..."
    aws ec2 describe-volumes \
      --filters Name=status,Values=available \
      --query 'Volumes[*].VolumeId' \
      --output text | \
    while read volume_id; do
      echo "Deleting volume: $volume_id"
      aws ec2 delete-volume --volume-id "$volume_id" 2>/dev/null || true
    done

    # Release unused Elastic IPs
    echo "Releasing unused Elastic IPs..."
    aws ec2 describe-addresses \
      --filters Name=association-id,Values=none \
      --query 'Addresses[*].AllocationId' \
      --output text | \
    while read alloc_id; do
      echo "Releasing EIP: $alloc_id"
      aws ec2 release-address --allocation-id "$alloc_id" 2>/dev/null || true
    done

    # Modify RDS to smaller instances
    echo "Analyzing RDS for downsizing..."
    # Implement logic to check CloudWatch metrics and downsize if needed

    echo "Optimization complete"

---
# Terraform cost optimization
resource "aws_ec2_instance" "spot" {
  ami           = "ami-0c55b159cbfafe1f0"
  instance_type = "t3.medium"

  # Use spot instances for non-critical workloads
  instance_market_options {
    market_type = "spot"

    spot_options {
      max_price                      = "0.05"  # Set max price
      spot_instance_type             = "persistent"
      interrupt_behavior             = "terminate"
      valid_until                    = "2025-12-31T23:59:59Z"
    }
  }

  tags = {
    Name = "spot-instance"
    CostCenter = "engineering"
  }
}

# Reserved instance for baseline capacity
resource "aws_ec2_instance" "reserved" {
  ami           = "ami-0c55b159cbfafe1f0"
  instance_type = "t3.medium"

  # Tag for reserved instance matching
  tags = {
    Name = "reserved-instance"
    ReservationType = "reserved"
  }
}

resource "aws_ec2_fleet" "mixed" {
  name = "mixed-capacity"

  launch_template_configs {
    launch_template_specification {
      launch_template_id = aws_launch_template.app.id
      version            = "$Latest"
    }

    overrides {
      instance_type       = "t3.medium"
      weighted_capacity   = "1"
      priority            = 1  # Reserved
    }

    overrides {
      instance_type       = "t3.large"
      weighted_capacity   = "2"
      priority            = 2  # Reserved
    }

    overrides {
      instance_type       = "t3a.medium"
      weighted_capacity   = "1"
      priority            = 3  # Spot
    }

    overrides {
      instance_type       = "t3a.large"
      weighted_capacity   = "2"
      priority            = 4  # Spot
    }
  }

  target_capacity_specification {
    total_target_capacity  = 10
    on_demand_target_capacity = 6
    spot_target_capacity = 4
    default_target_capacity_type = "on-demand"
  }

  fleet_type = "maintain"
}

2. Kubernetes Cost Optimization

# k8s-cost-optimization.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: cost-optimization-policies
  namespace: kube-system
data:
  policies.yaml: |
    # Resource quotas per namespace
    apiVersion: v1
    kind: ResourceQuota
    metadata:
      name: compute-quota
      namespace: production
    spec:
      hard:
        requests.cpu: "100"
        requests.memory: "200Gi"
        limits.cpu: "200"
        limits.memory: "400Gi"
        pods: "500"
      scopeSelector:
        matchExpressions:
          - operator: In
            scopeName: PriorityClass
            values: ["high", "medium"]

---
# Pod Disruption Budget for cost-effective scaling
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
  name: cost-optimized-pdb
  namespace: production
spec:
  minAvailable: 1
  selector:
    matchLabels:
      tier: backend

---
# Prioritize spot instances with taints/tolerations
apiVersion: v1
kind: Node
metadata:
  name: spot-node-1
spec:
  taints:
    - key: cloud.google.com/gke-preemptible
      value: "true"
      effect: NoSchedule

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: cost-optimized-app
  namespace: production
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
  template:
    metadata:
      labels:
        app: myapp
    spec:
      # Tolerate spot instances
      tolerations:
        - key: cloud.google.com/gke-preemptible
          operator: Equal
          value: "true"
          effect: NoSchedule

      # Prefer nodes with lower cost
      affinity:
        nodeAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
            - weight: 100
              preference:
                matchExpressions:
                  - key: karpenter.sh/capacity-type
                    operator: In
                    values: ["spot"]

      containers:
        - name: app
          image: myapp:latest
          resources:
            requests:
              cpu: 100m
              memory: 128Mi
            limits:
              cpu: 500m
              memory: 512Mi

3. Cost Monitoring Dashboard

# cost-monitoring.py
import boto3
import json
from datetime import datetime, timedelta

class CostOptimizer:
    def __init__(self):
        self.ce_client = boto3.client('ce')
        self.ec2_client = boto3.client('ec2')
        self.rds_client = boto3.client('rds')

    def get_daily_costs(self, days=30):
        """Get daily costs for past N days"""
        end_date = datetime.now().date()
        start_date = end_date - timedelta(days=days)

        response = self.ce_client.get_cost_and_usage(
            TimePeriod={
                'Start': str(start_date),
                'End': str(end_date)
            },
            Granularity='DAILY',
            Metrics=['BlendedCost'],
            GroupBy=[
                {'Type': 'DIMENSION', 'Key': 'SERVICE'}
            ]
        )

        return response

    def find_underutilized_instances(self):
        """Find EC2 instances with low CPU usage"""
        cloudwatch = boto3.client('cloudwatch')
        instances = []

        ec2_instances = self.ec2_client.describe_instances()
        for reservation in ec2_instances['Reservations']:
            for instance in reservation['Instances']:
                instance_id = instance['InstanceId']

                # Check CPU utilization
                response = cloudwatch.get_metric_statistics(
                    Namespace='AWS/EC2',
                    MetricName='CPUUtilization',
                    Dimensions=[{'Name': 'InstanceId', 'Value': instance_id}],
                    StartTime=datetime.now() - timedelta(days=7),
                    EndTime=datetime.now(),
                    Period=3600,
                    Statistics=['Average']
                )

                if response['Datapoints']:
                    avg_cpu = sum(d['Average'] for d in response['Datapoints']) / len(response['Datapoints'])
                    if avg_cpu < 10:  # Less than 10% average
                        instances.append({
                            'InstanceId': instance_id,
                            'Type': instance['InstanceType'],
                            'AverageCPU': avg_cpu,
                            'Recommendation': 'Downsize or terminate'
                        })

        return instances

    def estimate_reserved_instance_savings(self):
        """Estimate potential savings from reserved instances"""
        response = self.ce_client.get_reservation_purchase_recommendation(
            Service='EC2',
            LookbackPeriod='THIRTY_DAYS',
            PageSize=100
        )

        total_savings = 0
        for recommendation in response.get('Recommendations', []):
            summary = recommendation['RecommendationSummary']
            savings = float(summary['EstimatedMonthlyMonthlySavingsAmount'])
            total_savings += savings

        return total_savings

    def generate_report(self):
        """Generate comprehensive cost optimization report"""
        print("=== Cost Optimization Report ===\n")

        # Daily costs
        print("Daily Costs:")
        costs = self.get_daily_costs(7)
        for result in costs['ResultsByTime']:
            date = result['TimePeriod']['Start']
            total = result['Total']['BlendedCost']['Amount']
            print(f"  {date}: ${total}")

        # Underutilized instances
        print("\nUnderutilized Instances:")
        underutilized = self.find_underutilized_instances()
        for instance in underutilized:
            print(f"  {instance['InstanceId']}: {instance['AverageCPU']:.1f}% CPU - {instance['Recommendation']}")

        # Reserved instance savings
        print("\nReserved Instance Savings Potential:")
        savings = self.estimate_reserved_instance_savings()
        print(f"  Estimated Monthly Savings: ${savings:.2f}")

# Usage
if __name__ == '__main__':
    optimizer = CostOptimizer()
    optimizer.generate_report()

Cost Optimization Strategies

✅ DO

  • Use reserved instances for baseline
  • Leverage spot instances
  • Right-size resources
  • Monitor cost trends
  • Implement auto-scaling
  • Use multi-region pricing
  • Tag resources consistently
  • Schedule non-essential resources

❌ DON'T

  • Over-provision resources
  • Ignore unused resources
  • Neglect cost monitoring
  • Run all on-demand
  • Forget to release EIPs
  • Mix cost centers
  • Ignore savings opportunities
  • Deploy without budgets

Cost Saving Opportunities

  • Reserved Instances: 40-70% savings
  • Spot Instances: 70-90% savings
  • Committed Use Discounts: 25-55% savings
  • Right-sizing: 10-30% savings
  • Resource cleanup: 5-20% savings

Resources