| name | kubernetes-deployment |
| description | Deploy, manage, and scale containerized applications on Kubernetes clusters with best practices for production workloads, resource management, and rolling updates. |
Kubernetes Deployment
Overview
Master Kubernetes deployments for managing containerized applications at scale, including multi-container services, resource allocation, health checks, and rolling deployment strategies.
When to Use
- Container orchestration and management
- Multi-environment deployments (dev, staging, prod)
- Auto-scaling microservices
- Rolling updates and blue-green deployments
- Service discovery and load balancing
- Resource quota and limit management
- Pod networking and security policies
Implementation Examples
1. Complete Deployment with Resource Management
# kubernetes-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: api-service
namespace: production
labels:
app: api-service
version: v1
spec:
replicas: 3
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: 0
selector:
matchLabels:
app: api-service
template:
metadata:
labels:
app: api-service
version: v1
annotations:
prometheus.io/scrape: "true"
prometheus.io/port: "8080"
spec:
# Service account for RBAC
serviceAccountName: api-service-sa
# Security context
securityContext:
runAsNonRoot: true
runAsUser: 1000
fsGroup: 1000
# Pod scheduling
affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: app
operator: In
values:
- api-service
topologyKey: kubernetes.io/hostname
# Pod termination grace period
terminationGracePeriodSeconds: 30
# Init containers
initContainers:
- name: wait-for-db
image: busybox:1.35
command: ['sh', '-c', 'until nc -z postgres-service 5432; do echo waiting for db; sleep 2; done']
containers:
- name: api-service
image: myrepo/api-service:1.2.3
imagePullPolicy: IfNotPresent
# Ports
ports:
- name: http
containerPort: 8080
protocol: TCP
- name: metrics
containerPort: 9090
protocol: TCP
# Environment variables
env:
- name: NODE_ENV
value: "production"
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: api-secrets
key: database-url
- name: LOG_LEVEL
valueFrom:
configMapKeyRef:
name: api-config
key: log-level
- name: REPLICA_NUM
valueFrom:
fieldRef:
fieldPath: metadata.name
# Resource requests and limits
resources:
requests:
memory: "256Mi"
cpu: "100m"
limits:
memory: "512Mi"
cpu: "500m"
# Liveness probe
livenessProbe:
httpGet:
path: /health
port: 8080
scheme: HTTP
initialDelaySeconds: 30
periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3
# Readiness probe
readinessProbe:
httpGet:
path: /ready
port: 8080
scheme: HTTP
initialDelaySeconds: 10
periodSeconds: 5
timeoutSeconds: 3
failureThreshold: 2
# Volume mounts
volumeMounts:
- name: config
mountPath: /etc/config
readOnly: true
- name: cache
mountPath: /var/cache
- name: logs
mountPath: /var/log
# Security context
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
capabilities:
drop:
- ALL
# Volumes
volumes:
- name: config
configMap:
name: api-config
- name: cache
emptyDir:
sizeLimit: 1Gi
- name: logs
emptyDir:
sizeLimit: 2Gi
---
apiVersion: v1
kind: Service
metadata:
name: api-service
namespace: production
spec:
type: ClusterIP
selector:
app: api-service
ports:
- name: http
port: 80
targetPort: 8080
protocol: TCP
- name: metrics
port: 9090
targetPort: 9090
protocol: TCP
---
apiVersion: v1
kind: ConfigMap
metadata:
name: api-config
namespace: production
data:
log-level: "INFO"
max-connections: "100"
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: api-service-hpa
namespace: production
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: api-service
minReplicas: 3
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
2. Deployment Script
#!/bin/bash
# deploy-k8s.sh - Deploy to Kubernetes cluster
set -euo pipefail
NAMESPACE="${1:-production}"
DEPLOYMENT="${2:-api-service}"
IMAGE="${3:-myrepo/api-service:latest}"
echo "Deploying $DEPLOYMENT to namespace $NAMESPACE..."
# Check cluster connectivity
kubectl cluster-info
# Create namespace if not exists
kubectl create namespace "$NAMESPACE" --dry-run=client -o yaml | kubectl apply -f -
# Apply configuration
kubectl apply -f kubernetes-deployment.yaml -n "$NAMESPACE"
# Wait for rollout
echo "Waiting for deployment to rollout..."
kubectl rollout status deployment/"$DEPLOYMENT" -n "$NAMESPACE" --timeout=5m
# Verify pods are running
echo "Verification:"
kubectl get pods -n "$NAMESPACE" -l "app=$DEPLOYMENT"
# Check service
kubectl get svc -n "$NAMESPACE" -l "app=$DEPLOYMENT"
echo "Deployment complete!"
3. Service Account and RBAC
apiVersion: v1
kind: ServiceAccount
metadata:
name: api-service-sa
namespace: production
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: api-service-role
namespace: production
rules:
- apiGroups: [""]
resources: ["configmaps"]
verbs: ["get", "list"]
- apiGroups: [""]
resources: ["secrets"]
verbs: ["get"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: api-service-rolebinding
namespace: production
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: api-service-role
subjects:
- kind: ServiceAccount
name: api-service-sa
namespace: production
Deployment Patterns
Rolling Update
- Gradually replace old pods with new ones
- Zero downtime deployments
- Automatic rollback on failure
Blue-Green
- Maintain two identical environments
- Switch traffic instantly
- Easier rollback capability
Canary
- Deploy to subset of users first
- Monitor metrics before full rollout
- Reduce risk of bad deployments
Best Practices
✅ DO
- Use resource requests and limits
- Implement health checks (liveness, readiness)
- Use ConfigMaps for configuration
- Apply security context restrictions
- Use service accounts and RBAC
- Implement pod anti-affinity
- Use namespaces for isolation
- Enable pod security policies
❌ DON'T
- Use latest image tags in production
- Run containers as root
- Set unlimited resource usage
- Skip readiness probes
- Deploy without resource limits
- Mix configurations in container images
- Use default service accounts