Claude Code Plugins

Community-maintained marketplace

Feedback

polyglot-integration

@aj-geddes/useful-ai-prompts
4
0

Integrate multiple programming languages using FFI, native bindings, gRPC, or language bridges. Use when combining strengths of different languages or integrating legacy systems.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name polyglot-integration
description Integrate multiple programming languages using FFI, native bindings, gRPC, or language bridges. Use when combining strengths of different languages or integrating legacy systems.

Polyglot Integration

Overview

Integrate code written in different programming languages to leverage their unique strengths and ecosystems.

When to Use

  • Performance-critical code in C/C++/Rust
  • ML models in Python from other languages
  • Legacy system integration
  • Leveraging language-specific libraries
  • Microservices polyglot architecture

Implementation Examples

1. Node.js Native Addons (C++)

// addon.cc
#include <node.h>

namespace demo {

using v8::FunctionCallbackInfo;
using v8::Isolate;
using v8::Local;
using v8::Object;
using v8::String;
using v8::Value;
using v8::Number;

void Add(const FunctionCallbackInfo<Value>& args) {
  Isolate* isolate = args.GetIsolate();

  if (args.Length() < 2) {
    isolate->ThrowException(v8::Exception::TypeError(
        String::NewFromUtf8(isolate, "Wrong number of arguments")));
    return;
  }

  if (!args[0]->IsNumber() || !args[1]->IsNumber()) {
    isolate->ThrowException(v8::Exception::TypeError(
        String::NewFromUtf8(isolate, "Arguments must be numbers")));
    return;
  }

  double value = args[0]->NumberValue() + args[1]->NumberValue();
  Local<Number> num = Number::New(isolate, value);

  args.GetReturnValue().Set(num);
}

void Initialize(Local<Object> exports) {
  NODE_SET_METHOD(exports, "add", Add);
}

NODE_MODULE(NODE_GYP_MODULE_NAME, Initialize)

}
// Usage in Node.js
const addon = require('./build/Release/addon');
console.log(addon.add(3, 5)); // 8

2. Python from Node.js

// Using child_process
import { spawn } from 'child_process';

function callPython(script: string, args: any[] = []): Promise<any> {
  return new Promise((resolve, reject) => {
    const python = spawn('python3', [script, ...args.map(String)]);

    let stdout = '';
    let stderr = '';

    python.stdout.on('data', (data) => {
      stdout += data.toString();
    });

    python.stderr.on('data', (data) => {
      stderr += data.toString();
    });

    python.on('close', (code) => {
      if (code !== 0) {
        reject(new Error(stderr));
      } else {
        try {
          resolve(JSON.parse(stdout));
        } catch (error) {
          resolve(stdout);
        }
      }
    });
  });
}

// Usage
const result = await callPython('./ml_model.py', [100, 200]);
console.log('Python result:', result);
# ml_model.py
import sys
import json

def predict(x, y):
    # ML model logic
    return x * 2 + y

if __name__ == '__main__':
    x = int(sys.argv[1])
    y = int(sys.argv[2])
    result = predict(x, y)
    print(json.dumps({'prediction': result}))

3. Rust from Python (PyO3)

// lib.rs
use pyo3::prelude::*;

#[pyfunction]
fn fibonacci(n: u64) -> PyResult<u64> {
    let mut a = 0;
    let mut b = 1;

    for _ in 0..n {
        let temp = a;
        a = b;
        b = temp + b;
    }

    Ok(a)
}

#[pyfunction]
fn process_large_array(arr: Vec<f64>) -> PyResult<f64> {
    Ok(arr.iter().sum())
}

#[pymodule]
fn rust_extension(_py: Python, m: &PyModule) -> PyResult<()> {
    m.add_function(wrap_pyfunction!(fibonacci, m)?)?;
    m.add_function(wrap_pyfunction!(process_large_array, m)?)?;
    Ok(())
}
# Usage in Python
import rust_extension

result = rust_extension.fibonacci(100)
print(f"Fibonacci: {result}")

arr = list(range(1000000))
total = rust_extension.process_large_array(arr)
print(f"Sum: {total}")

4. gRPC Polyglot Communication

// service.proto
syntax = "proto3";

service Calculator {
  rpc Add (NumberPair) returns (Result);
  rpc Multiply (NumberPair) returns (Result);
}

message NumberPair {
  double a = 1;
  double b = 2;
}

message Result {
  double value = 1;
}
# Python gRPC Server
import grpc
from concurrent import futures
import service_pb2
import service_pb2_grpc

class Calculator(service_pb2_grpc.CalculatorServicer):
    def Add(self, request, context):
        return service_pb2.Result(value=request.a + request.b)

    def Multiply(self, request, context):
        return service_pb2.Result(value=request.a * request.b)

def serve():
    server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
    service_pb2_grpc.add_CalculatorServicer_to_server(Calculator(), server)
    server.add_insecure_port('[::]:50051')
    server.start()
    server.wait_for_termination()

if __name__ == '__main__':
    serve()
// Node.js gRPC Client
import * as grpc from '@grpc/grpc-js';
import * as protoLoader from '@grpc/proto-loader';

const packageDefinition = protoLoader.loadSync('service.proto');
const proto = grpc.loadPackageDefinition(packageDefinition);

const client = new proto.Calculator(
  'localhost:50051',
  grpc.credentials.createInsecure()
);

client.Add({ a: 10, b: 20 }, (error, response) => {
  if (error) {
    console.error(error);
  } else {
    console.log('Result:', response.value);
  }
});

5. Java from Python (Py4J)

// JavaApp.java
public class JavaApp {
    public int add(int a, int b) {
        return a + b;
    }

    public String processData(String data) {
        return data.toUpperCase();
    }

    public static void main(String[] args) {
        JavaApp app = new JavaApp();
        GatewayServer server = new GatewayServer(app);
        server.start();
    }
}
# Python client
from py4j.java_gateway import JavaGateway

gateway = JavaGateway()
app = gateway.entry_point

result = app.add(10, 20)
print(f"Result: {result}")

processed = app.processData("hello world")
print(f"Processed: {processed}")

Best Practices

✅ DO

  • Use appropriate IPC mechanism
  • Handle serialization carefully
  • Implement proper error handling
  • Consider performance overhead
  • Use type-safe interfaces
  • Document integration points

❌ DON'T

  • Pass complex objects across boundaries
  • Ignore memory management
  • Skip error handling
  • Use blocking calls in async code

Integration Methods

Method Use Case Overhead
Native Bindings Performance-critical code Low
IPC/Pipes Separate processes Medium
gRPC Microservices Medium
HTTP/REST Loose coupling High
Message Queue Async processing Medium

Resources