| name | Recommendation System |
| description | Build collaborative and content-based recommendation engines for product recommendations, personalization, and improving user engagement |
Recommendation System
Recommendation systems predict user preferences and suggest relevant items, driving engagement, sales, and user satisfaction.
Approaches
- Collaborative Filtering: Users similar to you liked X
- Content-based: Items similar to what you liked
- Hybrid: Combining multiple approaches
- Matrix Factorization: Latent factor models
- Deep Learning: Neural networks for embeddings
Key Metrics
- Precision@K: % recommendations relevant
- Recall@K: % relevant items found
- NDCG: Ranking quality metric
- Coverage: % items recommended
- Diversity: Variety in recommendations
Implementation with Python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import NMF
import seaborn as sns
# Create sample user-item interaction data
np.random.seed(42)
users = [f'user_{i}' for i in range(100)]
items = [f'item_{i}' for i in range(50)]
# Generate ratings (sparse matrix)
ratings_list = []
for user in users:
n_items_rated = np.random.randint(5, 20)
rated_items = np.random.choice(items, n_items_rated, replace=False)
for item in rated_items:
rating = np.random.randint(1, 6)
ratings_list.append({'user': user, 'item': item, 'rating': rating})
ratings_df = pd.DataFrame(ratings_list)
print("Sample Ratings:")
print(ratings_df.head(10))
# Create user-item matrix
user_item_matrix = ratings_df.pivot_table(
index='user', columns='item', values='rating', fill_value=0
)
print(f"\nUser-Item Matrix Shape: {user_item_matrix.shape}")
print(f"Sparsity: {1 - (user_item_matrix != 0).sum().sum() / (user_item_matrix.shape[0] * user_item_matrix.shape[1]):.2%}")
# 1. User-based Collaborative Filtering
user_similarity = cosine_similarity(user_item_matrix)
user_similarity_df = pd.DataFrame(
user_similarity, index=user_item_matrix.index, columns=user_item_matrix.index
)
print("\n1. User Similarity Matrix (Sample):")
print(user_similarity_df.iloc[:5, :5])
# Get recommendations for a user
def get_user_based_recommendations(user_id, user_sim_matrix, user_item_mat, n=5):
similar_users = user_sim_matrix[user_id].sort_values(ascending=False)[1:11]
recommendations = {}
for item in user_item_mat.columns:
if user_item_mat.loc[user_id, item] == 0: # Not yet rated
score = (similar_users * user_item_mat.loc[similar_users.index, item]).sum()
recommendations[item] = score
top_recs = sorted(recommendations.items(), key=lambda x: x[1], reverse=True)[:n]
return [rec[0] for rec in top_recs]
# Example: Get recommendations for user_0
user_recommendations = get_user_based_recommendations('user_0', user_similarity_df, user_item_matrix)
print(f"\nRecommendations for user_0: {user_recommendations}")
# 2. Item-based Collaborative Filtering
item_similarity = cosine_similarity(user_item_matrix.T)
item_similarity_df = pd.DataFrame(
item_similarity, index=user_item_matrix.columns, columns=user_item_matrix.columns
)
print("\n2. Item Similarity Matrix (Sample):")
print(item_similarity_df.iloc[:5, :5])
# 3. Content-based Filtering
item_features = np.random.rand(len(items), 10) # Simulate item features
item_feature_similarity = cosine_similarity(item_features)
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
# User similarity heatmap
sns.heatmap(user_similarity_df.iloc[:10, :10], annot=True, fmt='.2f', cmap='coolwarm',
ax=axes[0, 0], cbar_kws={'label': 'Similarity'})
axes[0, 0].set_title('User Similarity Matrix (Sample)')
# Item similarity heatmap
sns.heatmap(item_similarity_df.iloc[:10, :10], annot=True, fmt='.2f', cmap='coolwarm',
ax=axes[0, 1], cbar_kws={'label': 'Similarity'})
axes[0, 1].set_title('Item Similarity Matrix (Sample)')
# Rating distribution
axes[1, 0].hist(ratings_df['rating'], bins=5, color='steelblue', edgecolor='black', alpha=0.7)
axes[1, 0].set_xlabel('Rating')
axes[1, 0].set_ylabel('Count')
axes[1, 0].set_title('Rating Distribution')
axes[1, 0].grid(True, alpha=0.3, axis='y')
# Sparsity by user
user_rating_counts = user_item_matrix.astype(bool).sum(axis=1)
axes[1, 1].hist(user_rating_counts, bins=20, color='lightcoral', edgecolor='black', alpha=0.7)
axes[1, 1].set_xlabel('Number of Rated Items')
axes[1, 1].set_ylabel('Number of Users')
axes[1, 1].set_title('User Activity Distribution')
axes[1, 1].grid(True, alpha=0.3, axis='y')
plt.tight_layout()
plt.show()
# 4. Matrix Factorization (NMF)
nmf = NMF(n_components=10, init='random', random_state=42, max_iter=200)
user_latent = nmf.fit_transform(user_item_matrix)
item_latent = nmf.components_.T
print(f"\n4. Matrix Factorization:")
print(f"User latent factors shape: {user_latent.shape}")
print(f"Item latent factors shape: {item_latent.shape}")
# Reconstruct ratings
reconstructed_ratings = user_latent @ item_latent.T
reconstructed_df = pd.DataFrame(
reconstructed_ratings, index=user_item_matrix.index, columns=user_item_matrix.columns
)
# Calculate RMSE
original_ratings = user_item_matrix[user_item_matrix > 0]
predicted_ratings = reconstructed_df[user_item_matrix > 0]
rmse = np.sqrt(np.mean((original_ratings - predicted_ratings) ** 2))
print(f"Reconstruction RMSE: {rmse:.4f}")
# 5. Evaluation Metrics
def precision_at_k(actual, predicted, k=5):
if len(actual) == 0:
return 0
return len(set(actual[:k]) & set(predicted)) / k
def recall_at_k(actual, predicted, k=5):
if len(actual) == 0:
return 0
return len(set(actual[:k]) & set(predicted)) / len(actual)
# Simulate test set
test_user = 'user_0'
actual_items = ratings_df[ratings_df['user'] == test_user]['item'].values
predicted_items = get_user_based_recommendations(test_user, user_similarity_df, user_item_matrix, n=10)
p_at_5 = precision_at_k(predicted_items, actual_items, k=5)
r_at_5 = recall_at_k(predicted_items, actual_items, k=5)
print(f"\n5. Evaluation Metrics:")
print(f"Precision@5: {p_at_5:.2%}")
print(f"Recall@5: {r_at_5:.2%}")
print(f"F1@5: {2 * (p_at_5 * r_at_5) / (p_at_5 + r_at_5):.2%}")
# 6. Coverage and Diversity
recommended_items = set()
for user in user_item_matrix.index[:20]:
recs = get_user_based_recommendations(user, user_similarity_df, user_item_matrix, n=5)
recommended_items.update(recs)
coverage = len(recommended_items) / len(items)
print(f"\nCoverage: {coverage:.2%}")
# 7. Popularity Analysis
item_popularity = ratings_df['item'].value_counts()
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
# Top items
axes[0].barh(item_popularity.head(10).index, item_popularity.head(10).values,
color='steelblue', edgecolor='black', alpha=0.7)
axes[0].set_xlabel('Number of Ratings')
axes[0].set_title('Top 10 Most Popular Items')
axes[0].grid(True, alpha=0.3, axis='x')
# Popularity distribution
axes[1].hist(item_popularity, bins=20, color='lightcoral', edgecolor='black', alpha=0.7)
axes[1].set_xlabel('Number of Ratings')
axes[1].set_ylabel('Number of Items')
axes[1].set_title('Item Popularity Distribution')
axes[1].grid(True, alpha=0.3, axis='y')
plt.tight_layout()
plt.show()
# 8. Cold Start Problem Analysis
new_user = 'new_user'
new_user_ratings = pd.DataFrame({
'user': [new_user] * 2,
'item': ['item_0', 'item_1'],
'rating': [5, 4]
})
print(f"\n8. Cold Start Problem:")
print(f"New user has rated: {len(new_user_ratings)} items")
print(f"Recommendation challenge: Limited user history")
# 9. Recommendation accuracy over time
k_values = [1, 3, 5, 10]
metrics_over_k = []
for k in k_values:
precision_scores = []
for user in user_item_matrix.index[:10]:
recs = get_user_based_recommendations(user, user_similarity_df, user_item_matrix, n=k)
actual = ratings_df[ratings_df['user'] == user]['item'].values
precision_scores.append(precision_at_k(recs, actual, k=k))
metrics_over_k.append({
'K': k,
'Precision': np.mean(precision_scores),
'Recall': np.mean([recall_at_k(get_user_based_recommendations(user, user_similarity_df, user_item_matrix, n=k),
ratings_df[ratings_df['user'] == user]['item'].values, k=k)
for user in user_item_matrix.index[:10]])
})
metrics_df = pd.DataFrame(metrics_over_k)
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(metrics_df['K'], metrics_df['Precision'], marker='o', linewidth=2, label='Precision', markersize=8)
ax.plot(metrics_df['K'], metrics_df['Recall'], marker='s', linewidth=2, label='Recall', markersize=8)
ax.set_xlabel('K (Number of Recommendations)')
ax.set_ylabel('Score')
ax.set_title('Precision and Recall vs K')
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# 10. A/B Test Results (Simulated)
print("\n10. A/B Test Results (Simulated):")
print("Control (No recommendations): 5.2% Conversion Rate")
print("Treatment (Recommendations): 7.8% Conversion Rate")
print("Lift: 50% (Statistically Significant, p < 0.05)")
print("\nRecommendation system complete!")
Algorithm Comparison
- Collaborative Filtering: Simple, no content needed
- Content-based: Works with cold starts
- Matrix Factorization: Scalable, finds latent patterns
- Deep Learning: Complex patterns, requires data
- Hybrid: Combines strengths of multiple approaches
Implementation Considerations
- Handling cold start (new users/items)
- Computational efficiency at scale
- Addressing sparsity (most items not rated)
- Diversity vs relevance trade-off
- Real-time vs batch recommendations
Deliverables
- User-item interaction matrix
- Similarity matrices
- Recommendations for sample users
- Evaluation metrics (precision, recall, NDCG)
- Coverage and diversity analysis
- Visualization of results
- Production implementation code