| name | observability |
| version | 1.0.0 |
| type | knowledge |
| description | Structured logging, debugging techniques (pdb/ipdb), profiling (cProfile/line_profiler), stack traces, performance monitoring, and metrics. Use when adding logging, debugging issues, or optimizing performance. |
| keywords | logging, debug, profiling, performance, monitoring, metrics, pdb, cProfile, observability, tracing |
| auto_activate | true |
| allowed-tools | Read, Grep, Glob, Bash |
Observability Skill
Comprehensive guide to logging, debugging, profiling, and performance monitoring in Python applications.
When This Skill Activates
- Adding logging to code
- Debugging production issues
- Profiling performance bottlenecks
- Monitoring application metrics
- Analyzing stack traces
- Performance optimization
- Keywords: "logging", "debug", "profiling", "performance", "monitoring"
Core Concepts
1. Structured Logging
Structured logging with JSON format for machine-readable logs and rich context.
Why Structured Logging?
- Machine-parseable (easy to search, filter, aggregate)
- Context-rich (attach metadata to log entries)
- Consistent format across services
Key Features:
- JSON-formatted logs
- Log levels (DEBUG, INFO, WARNING, ERROR, CRITICAL)
- Context logging with extra metadata
- Best practices for meaningful logs
Example:
import logging
import json
logger = logging.getLogger(__name__)
logger.info("User action", extra={
"user_id": 123,
"action": "login",
"ip": "192.168.1.1"
})
See: docs/structured-logging.md for Python logging setup and patterns
2. Debugging Techniques
Interactive debugging with pdb/ipdb and effective debugging strategies.
Tools:
- Print debugging - Quick and simple
- pdb - Python's built-in debugger
- ipdb - IPython-enhanced debugger
- Post-mortem debugging - Debug after crash
pdb Commands:
n(next) - Execute current lines(step) - Step into functionc(continue) - Continue executionp variable- Print variable valuel- List source codeq- Quit debugger
Example:
import pdb; pdb.set_trace() # Debugger starts here
See: docs/debugging.md for interactive debugging patterns
3. Profiling
CPU and memory profiling to identify performance bottlenecks.
Tools:
- cProfile - CPU profiling (built-in)
- line_profiler - Line-by-line CPU profiling
- memory_profiler - Memory usage analysis
- py-spy - Sampling profiler (no code changes)
cProfile Example:
python -m cProfile -s cumulative script.py
Profile Decorator:
import cProfile
import pstats
def profile(func):
def wrapper(*args, **kwargs):
profiler = cProfile.Profile()
profiler.enable()
result = func(*args, **kwargs)
profiler.disable()
stats = pstats.Stats(profiler)
stats.sort_stats('cumulative')
stats.print_stats(10) # Top 10 functions
return result
return wrapper
@profile
def slow_function():
# Your code here
pass
See: docs/profiling.md for comprehensive profiling techniques
4. Monitoring & Metrics
Performance monitoring, timing decorators, and simple metrics.
Timing Patterns:
- Timing decorator - Measure function execution time
- Context manager timer - Measure code block duration
- Performance assertions - Fail if too slow
Simple Metrics:
- Counters - Track event occurrences
- Histograms - Track value distributions
Example:
import time
from functools import wraps
def timer(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
duration = time.time() - start
print(f"{func.__name__} took {duration:.2f}s")
return result
return wrapper
@timer
def process_data():
# Your code here
pass
See: docs/monitoring-metrics.md for stack traces, timers, and metrics
5. Best Practices & Anti-Patterns
Debugging strategies and logging anti-patterns to avoid.
Debugging Best Practices:
- Binary Search Debugging - Narrow down the problem area
- Rubber Duck Debugging - Explain the problem to someone (or something)
- Add Assertions - Catch bugs early
- Simplify and Isolate - Reproduce with minimal code
Logging Anti-Patterns to Avoid:
- Logging sensitive data (passwords, tokens)
- Logging in loops (use counters instead)
- No context in error logs
- Inconsistent log formats
- Too verbose logging (noise)
See: docs/best-practices-antipatterns.md for detailed strategies
Quick Reference
| Tool | Use Case | Details |
|---|---|---|
| Structured Logging | Production logs | docs/structured-logging.md |
| pdb/ipdb | Interactive debugging | docs/debugging.md |
| cProfile | CPU profiling | docs/profiling.md |
| line_profiler | Line-by-line profiling | docs/profiling.md |
| memory_profiler | Memory analysis | docs/profiling.md |
| Timer decorator | Function timing | docs/monitoring-metrics.md |
| Context timer | Code block timing | docs/monitoring-metrics.md |
Logging Cheat Sheet
import logging
# Setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Usage
logger.debug("Debug message") # Detailed diagnostic
logger.info("Info message") # General information
logger.warning("Warning message") # Warning (recoverable)
logger.error("Error message") # Error (handled)
logger.critical("Critical message") # Critical (unrecoverable)
# With context
logger.info("User action", extra={"user_id": 123, "action": "login"})
Debugging Cheat Sheet
# pdb
import pdb; pdb.set_trace()
# ipdb (enhanced)
import ipdb; ipdb.set_trace()
# Post-mortem (debug after crash)
import pdb, sys
try:
# Your code
pass
except Exception:
pdb.post_mortem(sys.exc_info()[2])
Profiling Cheat Sheet
# CPU profiling
python -m cProfile -s cumulative script.py
# Line profiling
kernprof -l -v script.py
# Memory profiling
python -m memory_profiler script.py
# Sampling profiler (no code changes)
py-spy top --pid 12345
Progressive Disclosure
This skill uses progressive disclosure to prevent context bloat:
- Index (this file): High-level concepts and quick reference (<500 lines)
- Detailed docs:
docs/*.mdfiles with implementation details (loaded on-demand)
Available Documentation:
docs/structured-logging.md- Logging setup, levels, JSON format, best practicesdocs/debugging.md- Print debugging, pdb/ipdb, post-mortem debuggingdocs/profiling.md- cProfile, line_profiler, memory_profiler, py-spydocs/monitoring-metrics.md- Stack traces, timing patterns, simple metricsdocs/best-practices-antipatterns.md- Debugging strategies and logging anti-patterns
Cross-References
Related Skills:
- error-handling-patterns - Error handling best practices
- python-standards - Python coding conventions
- testing-guide - Testing and debugging strategies
- performance-optimization - Performance tuning techniques
Related Tools:
- Python logging - Standard library logging module
- pdb/ipdb - Interactive debuggers
- cProfile - CPU profiling
- memory_profiler - Memory analysis
- py-spy - Sampling profiler
Key Takeaways
- Use structured logging - JSON format for machine-readable logs
- Log at appropriate levels - DEBUG < INFO < WARNING < ERROR < CRITICAL
- Include context - Add metadata to logs (user_id, request_id, etc.)
- Don't log sensitive data - Passwords, tokens, PII
- Use pdb/ipdb for debugging - Interactive debugging is powerful
- Profile before optimizing - Measure to find real bottlenecks
- Use cProfile for CPU profiling - Identify slow functions
- Use line_profiler for line-level profiling - Fine-grained analysis
- Use memory_profiler for memory leaks - Track memory usage
- Time critical sections - Decorator or context manager
- Binary search debugging - Narrow down problem area
- Simplify and isolate - Reproduce with minimal code