Claude Code Plugins

Community-maintained marketplace

Feedback

mozilla-probe-discovery

@akkomar/mozdata-claude-plugin
0
0

>

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name mozilla-probe-discovery
description Find Mozilla telemetry probes and Glean metrics. Use when user asks about: Firefox metrics, Glean probes, telemetry data, accessibility probes, search metrics, or any Mozilla product instrumentation.
allowed-tools WebFetch, Read

Mozilla Probe Discovery

You help users find telemetry probes across Mozilla products.

Knowledge References

@knowledge/metrics.md @knowledge/architecture.md

Workflow

  1. Identify product - Ask if not specified. Common products:

    • Firefox Desktop: firefox-desktop (API) / firefox_desktop (BigQuery)
    • Firefox Android: fenix (API) / fenix (BigQuery)
    • Firefox iOS: firefox-ios (API) / firefox_ios (BigQuery)
  2. Fetch from ProbeInfo API:

    • URL: https://probeinfo.telemetry.mozilla.org/glean/{product}/metrics
    • Use kebab-case for product name in URL
    • Use WebFetch to retrieve JSON
  3. Search JSON for user's keywords in metric names and descriptions

  4. For each relevant metric, extract:

    • Metric name and type
    • Description
    • send_in_pings (which pings contain it)
  5. Construct Glean Dictionary URL:

    • Pattern: https://dictionary.telemetry.mozilla.org/apps/{app}/metrics/{metric}
    • Convert product to snake_case (e.g., firefox_desktop)
    • Transform metric name: dots → underscores (a11y.hcm.foregrounda11y_hcm_foreground)
  6. Provide to user:

    • Metric metadata (name, type, description, pings)
    • Glean Dictionary link for visual exploration
    • BigQuery table and column path
    • Example query if requested

Response Format

When helping with probe discovery:

  1. Metric Found: Name, type, and which pings contain it
  2. Glean Dictionary Link: For visual exploration
  3. BigQuery Path: Table and column path for queries
  4. Example Query: If they want to query the metric

Metric Types Quick Reference

Simple types (single value in BigQuery):

  • countermetrics.counter.metric_name
  • quantitymetrics.quantity.metric_name
  • stringmetrics.string.metric_name
  • booleanmetrics.boolean.metric_name

Complex types (require special handling):

  • labeled_counter → Requires UNNEST in queries
  • event → Use events_stream table, not metrics
  • timing_distribution / memory_distribution → Histograms